1.復(fù)數(shù)z=(2a2-a-1)+(a-1)i,a∈R.
(1)若z為實(shí)數(shù),求a的值;
(2)若z為純虛數(shù),求a的值;
(3)若z=9-3i,求a的值.

分析 (1)根據(jù)虛數(shù)部分是0,求出a的值即可;(2)根據(jù)純虛數(shù)的定義求a即可;(3)根據(jù)系數(shù)相等得到關(guān)于a的方程組,解出即可.

解答 解:(1)若z為實(shí)數(shù),則a-1=0,得a=1. (2分)
(2)若z為純虛數(shù),則$\left\{{\begin{array}{l}{2{a^2}-a-1=0}\\{a-1≠0}\end{array}}\right.$,解得$a=-\frac{1}{2}$.(6分)
(3)若z=9-3i,則$\left\{{\begin{array}{l}{2{a^2}-a-1=9}\\{a-1=-3}\end{array}}\right.$,解得a=-2. (10分)

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的基本概念,熟練掌握定義是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知單位向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$⊥$\overrightarrow$,且正實(shí)數(shù)λ,μ滿足($\overrightarrow{a}$+$\overrightarrow$-$λ\overrightarrow{a}$)•($\overrightarrow{a}$+$\overrightarrow$-$μ\overrightarrow$)=0,則|$λ\overrightarrow{a}$-$μ\overrightarrow$|的取值范圍是[$\sqrt{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知x,y滿足(x-2)2+(y-3)2=1,則z=x2+y2的最小值為14-2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某初中對(duì)初二年級(jí)的學(xué)生進(jìn)行體質(zhì)測(cè)試,已知初二一班共有學(xué)生30人,測(cè)試立定跳遠(yuǎn)的成績(jī)用莖葉圖表示如下(單位:cm):
男生成績(jī)?cè)?75cm以上(包括175cm)定義為“合格”,成績(jī)?cè)?75cm以下(不包括175cm)定義為“不合格”;
女生成績(jī)?cè)?65cm以上(包括165cm)定義為“合格”,成績(jī)?cè)?65cm以下(不包括165cm)定義為“不合格”.
(1)求女生立定跳遠(yuǎn)成績(jī)的中位數(shù);
(2)若在男生中用分層抽樣的方法抽取6個(gè)人,求抽取成績(jī)“合格”的學(xué)生人數(shù);
(3)若從全班成績(jī)“合格”的學(xué)生中選取2個(gè)人參加復(fù)試,用X表示其中男生的人數(shù),試寫(xiě)出X的分布列,并求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.空氣質(zhì)量指數(shù)(Air Quality Index,簡(jiǎn)稱AQI)是定量描述空氣質(zhì)量狀況的質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級(jí),0~50為優(yōu);51~100為良101-150為輕度污染;151-200為中度污染;201~300為重度污染;>300為嚴(yán)重污染.
一環(huán)保人士記錄去年某地某月10天的AQI的莖葉圖如圖.
(Ⅰ)利用該樣本估計(jì)該地本月空氣質(zhì)量?jī)?yōu)良(AQI≤100)的天數(shù);(按這個(gè)月總共30天)
(Ⅱ)將頻率視為概率,從本月中隨機(jī)抽取3天,記空氣質(zhì)量?jī)?yōu)良的天數(shù)為ξ,求ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow a$=(m,0}),向量$\overrightarrow b,\overrightarrow c$滿足$\overrightarrow a$⊥$\overrightarrow{b$,$\overrightarrow c$-$\overrightarrow a$=2$\overrightarrow b$,且|$\overrightarrow c$|=$\sqrt{10}$,若$\overrightarrow c$與$\overrightarrow a$+$\overrightarrow b$夾角的余弦值為$\frac{{3\sqrt{10}}}{10}$,則|$\overrightarrow b$|=(  )
A.$\sqrt{2}$B.$\frac{5}{4}$C.$\frac{5}{4}$或2D.$\sqrt{2}$或$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,已知AD=AA1=1,AB=2,點(diǎn)E是AB的中點(diǎn).
(1)求三棱錐C-DD1E的體積;
(2)求證:D1E⊥A1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在等差數(shù)列{an}中,已知an=11-2n,則使前n項(xiàng)和Sn最大的n值為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在平面幾何中,三角形的面積等于其周長(zhǎng)的一半與其內(nèi)切圓半徑之積,類比之,在立體幾何中,三棱錐的體積等于其表面積的$\frac{1}{3}$與其內(nèi)切球半徑之積(用文字表述)

查看答案和解析>>

同步練習(xí)冊(cè)答案