分析 由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,可得f(x)的解析式.根據(jù)函數(shù)的周期性,求得要求式子的值.
解答 解:根據(jù)函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象,可得A=2,$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=6-2,
∴ω=$\frac{π}{4}$,f(x)=2sin$\frac{π}{4}$x,故函數(shù)f(x)的周期為 8.
∵f(1)+f(2)+…+f(8)=$\sqrt{2}$+2+$\sqrt{2}$+0-$\sqrt{2}$-2-$\sqrt{2}$+0=0,
∴f(1)+f(2)+…+f(2017)=252•[f(1)+f(2)+…+f(8)]+f(1)=0+$\sqrt{2}$,
故答案為:$\sqrt{2}$.
點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點坐標求出A,由周期求出ω,根據(jù)函數(shù)的周期性求函數(shù)的值,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $A_5^4$種 | B. | 45種 | C. | $C_5^4$種 | D. | 54種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | 0 | 1 | 2 | 3 | 4 |
y | 1 | 2 | 4 | 6 | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com