分析 先根據(jù)題意設(shè)出拋物線的標(biāo)準(zhǔn)方程,與直線方程聯(lián)立消去y,利用韋達(dá)定理求得xO+xA的表達(dá)式,根據(jù)OA中點的坐標(biāo)可求得xO+xA,繼而p的值可得.
解答 解:設(shè)拋物線方程為y2=2px(p≠0),
直線y=-x與拋物線方程聯(lián)立得x2-2px=0,
∴xO+xA=2p,
由中點坐標(biāo)公式可得,xO+xA═2×(-$\frac{1}{2}$)=-1,
∴p=-$\frac{1}{2}$,
∴拋物線C的方程為y2=-x,
故答案為:y2=-x.
點評 本題主要考查了拋物線的標(biāo)準(zhǔn)方程,直線與拋物線的關(guān)系.考查了考生基礎(chǔ)知識的理解和熟練應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆湖北襄陽四中高三七月周考三數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
已知為拋物線的焦點,點在該拋物線上且位于軸的兩側(cè), (其中為坐標(biāo)原點),則與面積之和的最小值是( )
A.2 B.3 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com