如圖,根據(jù)所示程序計算,若輸入x=
3
,則輸出結(jié)果為
 
考點:程序框圖
專題:計算題,算法和程序框圖
分析:根據(jù)
3
>1選擇左邊的函數(shù)關(guān)系式進行計算即可得解.
解答: 解:∵x=
3
>1,
∴y=(
3
)
2-1=3-1=2.
故答案為:2.
點評:本題考查了函數(shù)值的計算,比較簡單,準確選擇函數(shù)關(guān)系式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x+1     -1<x<0
x-1        0<x<1
,
(1)求f(
1
3
),f(f(
1
3
));
(2)若f(a)>2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列各式中a的取值范圍:
(1)loga3<logaπ,則a∈
 
;
(2)log5π<log5a,則a∈
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)藝術(shù)系考生的考號是0001,0002,…的順序從小到大依次排列的,某考生想知道今年報考的總?cè)藬?shù).報名剛結(jié)束,他隨機了解了50名考生的考號.經(jīng)計算,這50個考號的和是25025,由此估計今年報考該大學(xué)藝術(shù)系的考生大約有
 
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=
1
2
,Sn=n2an-n(n-1),n=1,2,…
(1)證明:數(shù)列{
n+1
n
Sn}是等差數(shù)列,并求Sn
(2)設(shè)bn=
Sn
n3+3n2
,求證:b1+b2+…+bn
5
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-2x,x∈[0,4]的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,a1=1,an=
Sn
n
+2(n-1),(n∈N*),若S1+
S2
2
+
S3
3
+…+
Sn
n
-(n-1)2=2013,則n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
log2(-x),x<0
0,x=0
f(x-1),x>0
的圖象與直線y=x交點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四邊形ABCD是圓O的內(nèi)接四邊形,點O在BD上,已知∠ABC=60°,AD=
3
,CD=2
3
,則圓O的半徑為
 

查看答案和解析>>

同步練習(xí)冊答案