函數(shù)f(x)=x2-2x,x∈[0,4]的值域是
 
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:本題為二次函數(shù)在特定區(qū)間上的值域問(wèn)題,結(jié)合二次函數(shù)的圖象求解即可.不能直接代兩端點(diǎn).
解答: 解:∵函數(shù)f(x)=x2-2x的對(duì)稱軸的方程為x=1,
∴函數(shù)f(x)=x2-2x,x∈[0,4]的最小值為f(1)=-1,最大值為f(4)=8,
∴其值域?yàn)閇-1,8].
故答案為:[-1,8].
點(diǎn)評(píng):本題給出二次函數(shù),求它在閉區(qū)間上的值域,著重考查了函數(shù)的單調(diào)性、二次函數(shù)的圖象與性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l與直線x+y=1=0垂直,其縱截距b=-
3
,橢圓C的兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0),且與直線l相切.
(1)求直線l,橢圓C的方程;
(2)過(guò)F1作兩條互相垂直的直線l1、l2,與橢圓分別交于P、Q及M、N,求四邊形PMQN面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=1,an+an+1=(
1
5
n(n∈N*),Sn=a1+5a2+52a3+…+5n-1an,則
6Sn-5nan
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2-2,0≤x≤2
2x,  x>2
,若f(x0)≥1,則x0的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,根據(jù)所示程序計(jì)算,若輸入x=
3
,則輸出結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A.∠B.∠C的對(duì)邊分別是a、b、c,若a=1,b=
3
,∠A=30°,則△ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x-my+1=0是圓C:x2+y2-4x+4y-5=0的一條對(duì)稱軸,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-x2+x(x≥0)
x+x2(x<0)
,對(duì)任意的x∈[0,1]恒有f(x+a)≤f(x)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在R上的函數(shù)f(x)=
1
|x-2|
  (x≠2)
1   (x=2)
若關(guān)于x的方程f2(x)+af(x)+b=0有3個(gè)不同的實(shí)根x1,x2,x3滿足x1<x2<x3,下列說(shuō)法正確的是
 
(填序號(hào))
①x12+x22+x32=14;
②二次函數(shù)g(t)=t2+at+b的圖象一定過(guò)某個(gè)定點(diǎn);
③a2-4b=0;
④x1,x2,x3一定成等差數(shù)列;
⑤x1,x2,x3可能成等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案