13.對(duì)任意實(shí)數(shù)m,圓x2+y2-2mx-4my+6m-2=0恒過定點(diǎn),則其坐標(biāo)為(1,1),或($\frac{1}{5}$,$\frac{7}{5}$).

分析 由已知得x2+y2-2=(2x+4y-6)m,從而$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-2=0}\\{2x+4y-6=0}\end{array}\right.$,由此能求出定點(diǎn)的坐標(biāo).

解答 解:x2+y2-2mx-4my+6m-2=0,
∴x2+y2-2=(2x+4y-6)m,
∴$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-2=0}\\{2x+4y-6=0}\end{array}\right.$,
解得x=1,y=1,或x=$\frac{1}{5}$,y=$\frac{7}{5}$.
∴定點(diǎn)的坐標(biāo)是(1,1),或($\frac{1}{5}$,$\frac{7}{5}$).
故答案為(1,1),或($\frac{1}{5}$,$\frac{7}{5}$).

點(diǎn)評(píng) 本題考查動(dòng)圓經(jīng)過的定點(diǎn)坐標(biāo)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,頂點(diǎn)A(5,1)、B(-1,-3)、C(4,3),AB邊上的中線CM和AC邊上的高線BN的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知A={x|2x2+ax+2=0},B={x|x2+3x-b=0},且A∩B={2}.
(1)求a,b的值;
(2)設(shè)全集U=AUB,求(∁UA)U(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(x)=2sin(ωx)(ω>0)在[-$\frac{π}{4}$,$\frac{2π}{3}$]上單調(diào)遞增,則ω的取值范圍是(0,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若數(shù)列{an}是首項(xiàng)為$\frac{1}{2}$,公比為a-$\frac{1}{2}$的無窮等比數(shù)列,且{an}各項(xiàng)的和為a,則a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)集合A={0,2,4,6,8,10},B={4,8},則∁AB={0,2,6,10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若A⊆B,A⊆C,B={0,1,2,3,4,5,6},C={0,2,4,6,8,10},則這樣的A的個(gè)數(shù)為( 。
A.4B.15C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}是等差數(shù)列,若a4+2a6+a8=12,則該數(shù)列前11項(xiàng)的和為(  )
A.10B.12C.24D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x+1)=2x2+5x+2,則f(x)的解析式為( 。
A.f(x)=2x2+5x+2B.f(x)=2x2+x-1C.f(x)=2x2+9x+11D.f(x)=2x2+5x-2

查看答案和解析>>

同步練習(xí)冊(cè)答案