已知數(shù)列
1
1×2
,
1
2×3
,
1
3×4
,…
1
n(n+1)
,…,計(jì)算S1,S2,S3,由此推測(cè)計(jì)算Sn的公式,并證明.
考點(diǎn):數(shù)學(xué)歸納法,歸納推理
專(zhuān)題:計(jì)算題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法,推理和證明
分析:S1=1-
1
2
=
1
2
,S2=1-
1
3
=
2
3
,S3=1-
1
4
=
3
4
,猜想:Sn=1-
1
n+1
;利用歸納法進(jìn)行證明,檢驗(yàn)n=1時(shí)等式成立,假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.
解答: 解:S1=1-
1
2
=
1
2
,S2=1-
1
2
+
1
2
-
1
3
=
2
3
,S3=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
3
4
,猜測(cè)Sn=
n
n+1

運(yùn)用數(shù)學(xué)歸納法證明:當(dāng)n=1時(shí),S1=
1
2
,S1=
1
1×2
,等式成立,
假設(shè)當(dāng)n=k時(shí),Sk=
k
k+1
成立,
則當(dāng)n=k+1時(shí),Sk+1=Sk+
1
(k+1)(k+2)
=
k
k+1
+
1
k+1
-
1
k+2
=1-
1
k+2
=
k+1
(k+1)+1
,
即當(dāng)n=k+1時(shí),等式也成立.
故對(duì)n∈N*,測(cè)Sn=
n
n+1
都成立.
點(diǎn)評(píng):本題考查歸納推理,用數(shù)學(xué)歸納法證明等式,證明故當(dāng)n=k+1時(shí),猜想也成立,是解題的難點(diǎn)和關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式
x(x-1)2
x+1
<0的解集是( 。
A、{x|-1<x<1}
B、{x|0<x<1}
C、{-1<x<0}
D、{x|x>1或-1<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(2x+φ)(0<φ<2π)的圖象過(guò)點(diǎn)(
π
2
,-2).
(1)求φ的值;
(2)若f(
α
2
)=
6
5
,-
π
2
<α<0,求sin(2α-
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-x
2x+1
,請(qǐng)畫(huà)出它的草圖,并求出它的對(duì)稱(chēng)中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-1<x<
3
2
},B={x|x<a或x>a+1},A?B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班25名女同學(xué),15名男同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,男女生各抽取多少名才符合抽樣要求?
(2)隨機(jī)抽出8位,他們的數(shù)學(xué)分?jǐn)?shù).物理分?jǐn)?shù)對(duì)應(yīng)如下表:
①若規(guī)定85分以上(包括85分)為優(yōu)秀,在該班隨機(jī)調(diào)查一位同學(xué),他的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;
學(xué)生編號(hào)12345678
數(shù)學(xué)分?jǐn)?shù)x6065707580859095
物理分?jǐn)?shù)y7277808488909395
②根據(jù)上表數(shù)據(jù)用變量y與x的相關(guān)系數(shù)或散點(diǎn)圖說(shuō)明物理成績(jī)y與數(shù)學(xué)成績(jī)x之間是否具有線性相關(guān)性?如果具有線性相關(guān)性,求y與x的線性回歸方程(系數(shù)精確到0.01),如果不具有線性相關(guān)性,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)滿(mǎn)足f(x+1)-f(x)=2x,且f(0)=1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x(2-x).
(1)求函數(shù)f(x)的解析式;
(2)畫(huà)出函數(shù)f(x)的圖象(不需列表);
(3)討論方程f(x)-k=0的根的情況.(只需寫(xiě)出結(jié)果,不要解答過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的矩形ABCD中,BC=2AB,M是AD的中點(diǎn),以BM為折痕將△ABM向上折起,使得平面ABM⊥平面BCDM.
(1)證明:AB⊥平面AMC;
(2)已知AB=2,求四棱錐A-BCDM的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案