9.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知△ABC的面積為$\frac{{\sqrt{3}}}{12}{a^2}$,b=2,則a+$\frac{4}{a}$的最小值為4.

分析 根據(jù)題意和三角形的面積求出a的表達(dá)式,根據(jù)正弦函數(shù)的性質(zhì)求出a的范圍,利用基本不等式求出a+$\frac{4}{a}$的最小值.

解答 解:由題意知,△ABC的面積為$\frac{{\sqrt{3}}}{12}{a^2}$,b=2,
∴$\frac{1}{2}absinA=\frac{\sqrt{3}}{12}{a}^{2}$,則$sinA=\frac{\sqrt{3}}{12}a$,
∵0<A<π,∴$0<\frac{\sqrt{3}}{12}a≤1$,解得0<a≤4$\sqrt{3}$,
∴a+$\frac{4}{a}$≥2$\sqrt{a•\frac{4}{a}}$=4,當(dāng)且僅當(dāng)$a=\frac{4}{a}$,即a=2時(shí)取等號(hào),
∴a+$\frac{4}{a}$的最小值為4,
故答案為:4.

點(diǎn)評(píng) 本題考查基本不等式求最值問題,正弦函數(shù)的性質(zhì),以及三角形的面積公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校從學(xué)生會(huì)文藝部6名成員(其中男生4人,女生2人)中,任選3人參加學(xué)校舉辦的“慶元旦迎新春”文藝匯演活動(dòng).
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率;
(3)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(B)和P(B|A).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)$\frac{(1-i)(1+i)}{i}$在復(fù)平面中所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離是( 。
A.2B.-2C.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若a=log43,b=20.5,c=log2(sin$\frac{π}{3}$),則( 。
A.a>b>cB.a>c>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在極坐標(biāo)系中,作出下列各點(diǎn):
A(3,0)、B(-3,$\frac{π}{3}$)、C(5,$\frac{2π}{3}$)、D(-2,π)、E(0,-$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,b=c,滿足$\frac{sinB}{sinA}=\frac{1-cosB}{cosA}$.若點(diǎn)O是△ABC外一點(diǎn),∠AOB=θ(0<θ<π),OA=2OB=2,平面四邊形OACB面積的最大值是$\frac{8+5\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和Sn,且an+Sn=1
(1)證明數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{bn}滿足b1=1,bn+1-bn=an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.《萊因徳紙草書》是世界上最古老的數(shù)學(xué)著作之一.書中有這樣一道題目:把100個(gè)面包分給5個(gè)人,使每人所得成等差數(shù)列,且使較大的三份之和的$\frac{1}{7}$是較小的兩份之和,問最小的一份為$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求極限:$\underset{lim}{x→∞}$x[ln(x+2)-lnx].

查看答案和解析>>

同步練習(xí)冊(cè)答案