已知一個(gè)幾何體的三視圖如圖所示,其中正視圖是直角梯形.
(1)試根據(jù)三視圖畫(huà)出對(duì)應(yīng)幾何體的直觀圖.
(2)求該幾何體中最長(zhǎng)的棱長(zhǎng)及最短的棱長(zhǎng).
考點(diǎn):簡(jiǎn)單空間圖形的三視圖,由三視圖求面積、體積
專(zhuān)題:空間位置關(guān)系與距離
分析:(1)分析該幾何體的三視圖,畫(huà)出對(duì)應(yīng)的直觀圖即可;
(2)根據(jù)幾何體的直觀圖,得出幾何體中最長(zhǎng)的棱與最短的棱是什么.
解答: 解:(1)根據(jù)三視圖畫(huà)出對(duì)應(yīng)幾何體的直觀圖,如圖所示;
(2)該幾何體中最長(zhǎng)的棱長(zhǎng)是AD,
AD=
AB2+BD2
=
(42+42)+12
=
33
;
最短的棱長(zhǎng)是BD,
BD=1.
點(diǎn)評(píng):本題考查了空間幾何體的三視圖與直觀圖的應(yīng)用問(wèn)題,解題的關(guān)鍵是由三視圖畫(huà)出對(duì)應(yīng)的直觀圖,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心在y軸上,半徑為1,且過(guò)點(diǎn)(1,2)的圓的方程是( 。
A、x2+(y-2)2=1
B、x2+(y+2)2=1
C、x2+(y-3)2=1
D、x2+(y+3)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出s的值為11,則輸入自然數(shù)n的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a≠0,集合A={x|y=ln
ax
x-a2-1
},B={x|2<x<4}.
(1)求集合A;
(2)設(shè)命題p:x∈A.,命題q:x∈B,若p是q成立的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2分別是橢圓C:
x2
4
+
y2
3
=1的左、右焦點(diǎn),點(diǎn)P是橢圓上異于頂點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)F2作直線(xiàn)PF2的垂線(xiàn)交直線(xiàn)x=4于點(diǎn)Q.
(1)當(dāng)PF1⊥F1F2時(shí),求點(diǎn)Q坐標(biāo);
(2)判斷直線(xiàn)PQ與直線(xiàn)OP的斜率之積是否為定值?若是,求出定值;若不是,說(shuō)明理由;
(3)證明:直線(xiàn)PQ與橢圓C只有一個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人年初向銀行貸款10萬(wàn)元用于購(gòu)房,
(1)如果他向建設(shè)銀行貸款,年利率為5%,且這筆款分10次等額歸還(不計(jì)復(fù)利),每年一次,并從借后次年年初開(kāi)始?xì)w還,問(wèn)每年應(yīng)付多少元?
(2)如果他向工商銀行貸款,年利率為4%,要按復(fù)利計(jì)算(即本年的利息計(jì)入次年的本金生息),仍分10次等額歸還,每年一次,每年應(yīng)還多少元?(其中:1.0410=1.4802)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把一個(gè)半徑為R的裝滿(mǎn)水的球形容器放入其外切正方體中,并把球形容器中的水放出,當(dāng)球形容器中的水面與正方體中水面高度相同時(shí),若不計(jì)容器的厚度,則此時(shí)水面的高度為( 。
A、
R
3
B、
2R
3
C、
πR
3
D、
3R
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1上一點(diǎn)P,F(xiàn)1、F2為橢圓的焦點(diǎn),若∠F1PF2=θ,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+sinβ=
1
4
,cosα+cosβ=
1
3
,求cos(α-β)和cos(α+β).

查看答案和解析>>

同步練習(xí)冊(cè)答案