【題目】在某大學自主招生考試中,所有選報Ⅱ類志向的考生全部參加了數(shù)學與邏輯閱讀與表達兩個科目的考試,成績分為, , , , 五個等級.某考場考生兩科的考試成績的數(shù)據(jù)如下圖所示,其中數(shù)學與邏輯科目的成績?yōu)?/span>的考生有人.

Ⅰ)求該考場考生中閱讀與表達科目中成績?yōu)?/span>的人數(shù).

Ⅱ)若等級, , , 分別對應分, 分, 分, 分, 分.

。┣笤摽紙隹忌數(shù)學與邏輯科目的平均分.

ⅱ)若該考場共有人得分大于分,其中有分, 分, 分.

從這人中隨機抽取兩人,求兩人成績之和的分布列和數(shù)學期望.

科目:數(shù)學與邏輯

科目:閱讀與表達

【答案】3 ⅰ:平均分為2.9 分布列見解析,數(shù)學期望為

【解析】試題分析:(Ⅰ)由數(shù)學與邏輯中成績等級為B的考生有10人,頻率為,可求考場中的人數(shù),然后結合其頻率可求;(Ⅱ)。結合頻率分布直方圖可求該考場考生“數(shù)學與邏輯”科目的平均分;ⅱ:設兩人成績之和為ξ,則ξ的值可以為16,1718,19,20,然后求出ξ去每個值對應的概率,即可求解出ξ的分布列及ξ的數(shù)學期望;

試題解析:

∵“數(shù)學與邏輯”科目中等級為的考生有人,

∴考場共有人,

∴“閱讀與表達”科目中成績等級為的人數(shù)為

人.

。浩骄譃分,

ⅱ:設兩個人成績之和為,則的值可以為, , ,

,

, ,

的分布列為

,

的數(shù)學期望為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的焦距2,離心率為上一點坐標為

求該橢圓方程;

對于直線橢圓總存在不同的兩點于直線對稱,且,

實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1在平面直角坐標系中的參數(shù)方程為 (t為參數(shù)),以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,有曲線C2:ρ=2cosθ-4sinθ

(1)將C1的方程化為普通方程,并求出C2的平面直角坐標方程

(2)求曲線C1C2兩交點之間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=Asin(2x+ )(x∈R)的圖象過點P( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)已知f( + )= ,﹣ <a<0,求cos(a﹣ )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).
(1)求函數(shù)f(x)的單調遞增區(qū)間;
(2)記函數(shù)y=F(x)的圖象為曲線C.設點A(x1 , y1),B(x2 , y2)是曲線C上的不同兩點.如果在曲線C上存在點M(x0 , y0),使得:①x0= ;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值和諧切線”.當a=2時,函數(shù)f(x)是否存在“中值和諧切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記f(x)=|log2(ax)|在x∈[ ,8]時的最大值為g(a),則g(a)的最小值為(
A.
B.2
C.
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A={x|x2﹣2x﹣3<0},B={x||x﹣1|<a}.
(1)若AB,求實數(shù)a的取值范圍;
(2)若BA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知底角為45°的等腰梯形ABCD,底邊BC長為12,腰長為4 ,當一條垂直于底邊BC(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分.

(1)令BF=x(0<x<12),試寫出直線右邊部分的面積y與x的函數(shù)解析式;
(2)在(1)的條件下,令y=f(x).構造函數(shù)g(x)=
①判斷函數(shù)g(x)在(4,8)上的單調性;
②判斷函數(shù)g(x)在定義域內(nèi)是否具有單調性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用an的信息如圖.

(1)求an;
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

同步練習冊答案