2.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{2x+y≥2}\end{array}$,則z=x2+y2的最小值是( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{4}{5}$C.1D.4

分析 由約束條件作出可行域,由z=x2+y2的幾何意義,即原點(diǎn)O(0,0)到直線3x+4y-5=0的距離求得答案.

解答 解:由約束條件$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{2x+y≥2}\end{array}$,作出可行域如圖,

由圖可知,z=x2+y2的最小值為原點(diǎn)O(0,0)
到直線2x+y-2=0的距離的平方,
等于$(\frac{2}{\sqrt{1+4}})^{2}$=$\frac{4}{5}$.
故選:B.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)f(x)=sin(ln$\frac{x-1}{x+1}$)的圖象大致為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)f(x)=ln(4-x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,4]B.(-∞,4)C.(0,4]D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{{{a^x}-1}}{{{a^x}+1}}(a>1),g(x)={3^x}$.
(1)若g(a+2)=81,求實(shí)數(shù)a的值,并判斷函數(shù)f(x)的奇偶性;
(2)用定義證明f(x)在R上的增函數(shù);
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在三棱柱ABC-A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6.若E,F(xiàn)分別是棱BB1,CC1上的點(diǎn),且$BE={B_1}E,{C_1}F=\frac{1}{3}C{C_1}$,則異面直線A1E與AF所成角的余弦值為( 。
A.$-\frac{{\sqrt{2}}}{6}$B.$\frac{{\sqrt{2}}}{6}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.(1-x)(2x+1)4的展開式中,x3的系數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若 x,y 滿足$\left\{\begin{array}{l}x-y+2≥0\\ x+y-4≤0\\ y≥0\end{array}\right.$,則 z=y-2x 的最大值為(  )
A.8B.4C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù) f(x)=$\frac{1}{{\sqrt{3-x}}}$+ln(x+2)的定義域?yàn)椋?2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).
(I)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案