分析 (1)由條件利用閉函數(shù)的定義判斷f(x)=-x3是不是閉函數(shù).
(2)根據(jù)閉函數(shù)的定義,a,b是方程x2-(2k+1)x+k2-2=0的兩根,且a≥k,b>k.令f(x)=x2-(2k+1)x+k2-2,得$\left\{\begin{array}{l}{f(k)≥0}\\{△>0}\\{\frac{2k+1}{2}>k}\end{array}\right.$,由此求得k的范圍.
解答 解:(1)f(x)=-x3在R上是減函數(shù),滿足①;
設(shè)存在區(qū)間[a,b],f(x)的取值集合也是[a,b],則$\left\{\begin{array}{l}{{-a}^{3}=b}\\{{-b}^{3}=a}\end{array}\right.$,解得a=-1,b=1,
所以存在區(qū)間[-1,1]滿足②,
所以f(x)=-x3(x∈R)是閉函數(shù).
(2)f(x)=k+$\sqrt{x+2}$在[-2,+∞)上的增函數(shù),
由題意知,f(x)=k+$\sqrt{x+2}$是閉函數(shù),存在區(qū)間[a,b]滿足②,即:$\left\{\begin{array}{l}{k+\sqrt{a+2}=a}\\{k+\sqrt{b+2}=b}\end{array}\right.$.
即a,b是方程k+$\sqrt{x+2}$=x的兩根,化簡(jiǎn)得,
a,b是方程x2-(2k+1)x+k2-2=0的兩根,且a≥k,b>k.
令f(x)=x2-(2k+1)x+k2-2,得$\left\{\begin{array}{l}{f(k)≥0}\\{△>0}\\{\frac{2k+1}{2}>k}\end{array}\right.$,
解得-$\frac{9}{4}$<k≤-2,所以實(shí)數(shù)k的取值范圍為(-$\frac{9}{4}$,-2].
點(diǎn)評(píng) 本題主要考查閉函數(shù)的定義,函數(shù)的單調(diào)性的性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 3 | 4 | 5 | 6 | 7 |
y | 2 | 3 | 7 | 9 | 9 |
A. | -2 | B. | -3 | C. | -4 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com