A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
分析 把方程的相異解α、β分別代入方程,得到的兩個方程相減,利用和差化積公式化簡,結合sin(α-β)≠0,求得cos(α+β+$\frac{π}{3}$)=0,結合范圍可求α+β=$\frac{π}{6}$或$\frac{7π}{6}$,從而可求tan(α+β)的值.
解答 解:∵α、β是方程的相異解,
∴sin(2α+$\frac{π}{3}$)+m=0①.
sin(2β+$\frac{π}{3}$)+m=0②.
∴①-②得sin(2α+$\frac{π}{3}$)-sin(2β+$\frac{π}{3}$)=2cos(α+β+$\frac{π}{3}$)sin(α-β)=0,
∵α,β∈(0,π),α,β相異,可得:α-β∈(-π,π),可得:sin(α-β)≠0,
∴cos(α+β+$\frac{π}{3}$)=0,
∵α+β+$\frac{π}{3}$∈($\frac{π}{3}$,$\frac{7π}{3}$),
∴解得:α+β+$\frac{π}{3}$=$\frac{π}{2}$或$\frac{3π}{2}$,可得α+β=$\frac{π}{6}$或$\frac{7π}{6}$,
∴tan(α+β)=$\frac{\sqrt{3}}{3}$.
故選:C.
點評 本題主要考查和差化積公式,正弦函數(shù),余弦函數(shù)的圖象和性質,考查了數(shù)形結合思想的應用,解題的關鍵既要熟練掌握公式,又要靈活利用特殊角,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 8 | C. | 7 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{9}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com