13.已知函數(shù)f(x)=$\frac{1}{{x}^{2}-1}$,g(x)=$\sqrt{x}$,函數(shù)f(x)的定義域?yàn)锳,
(1)求集合A;
(2)若函數(shù)g(x)的值域?yàn)榧螧,求A∩B.

分析 (1)根據(jù)分式有意義的條件,分母不能為0,求出函數(shù)f(x)的定義域;
(2)由g(x)=$\sqrt{x}$,得函數(shù)g(x)的值域?yàn)閇0,+∞),則A∩B的答案可求.

解答 解:(1)由x2-1≠0,得x≠±1,
∴函數(shù)f(x)=$\frac{1}{{x}^{2}-1}$的定義域?yàn)閧x|x≠±1}.
∴A={x|x≠±1};
(2)由g(x)=$\sqrt{x}$,得函數(shù)g(x)的值域?yàn)閧y|y≥0}.
∴B={y|y≥0}.
則A∩B={x|x≠±1}∩{y|y≥0}=[0,1)∪(1,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的定義域及其求法,注意分母不能為0,考查了交集及其運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.7人站成一排.
(1)甲、乙、丙三人排列順序一定時(shí),有840種不同的排法;
(2)甲在乙的左邊,有2520種不同的排法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,則$\frac{sin(2π+α)}{cos(-α)ta{n}^{2}α}$=( 。
A.$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.-$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2(1-x),0≤x≤1}\\{x-1,1<x≤2}\end{array}\right.$,如果對(duì)任意的n∈N,定義fn(x)=$\frac{f\{f[f…f(f)]\}}{n個(gè)}$,那么f2016(2)的值為( 。▊渥ⅲ豪飳永ㄌ(hào)內(nèi)位f(x))
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=asinωx+bcosωx(ω>0)的圖象如圖所示,則f(0)+f(1)+f(2)+f(3)+…+f(2016)=
0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若關(guān)于x的方程x2+(a+1)(arcsinx)x+2a-1=0有且僅有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知雙曲線(xiàn)C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的右頂點(diǎn)為A,漸近線(xiàn)為l1,l2,點(diǎn)P為雙曲線(xiàn)C的動(dòng)點(diǎn)(與點(diǎn)A不重合),過(guò)點(diǎn)P作l1的平行線(xiàn)交l2于M,直線(xiàn)AP交l2于N,則|MN|=(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)F1,F(xiàn)2分別是雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),O為坐標(biāo)原點(diǎn),若按雙曲線(xiàn)右支上存在一點(diǎn)P,使$\overrightarrow{O{F}_{2}}$•$\overrightarrow{{F}_{2}P}$=0,且|$\overrightarrow{{F}_{1}{F}_{2}}$|=|$\overrightarrow{P{F}_{2}}$|,則雙曲線(xiàn)的離心率為( 。
A.1±$\sqrt{2}$B.1+$\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)A(0,-1),期左、右焦點(diǎn)分別為F1、F2,過(guò)F2的一條直線(xiàn)與橢圓交于M、N兩點(diǎn),△MF1N的周長(zhǎng)為4$\sqrt{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)經(jīng)過(guò)點(diǎn)B(1,1)且斜率為k的直線(xiàn)與橢圓C交于不同的兩點(diǎn)P、Q(均異于點(diǎn)A),證明直線(xiàn)AP與AQ斜率之和為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案