1.如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,B1C的中點(diǎn)為O,AC=AB1

(1)文字?jǐn)⑹銎矫媾c平面垂直判定定理;
(2)求證:平面ABO⊥平面ACB1

分析 (1)通過作輔助線,作出二面角,利用定義法證明二面角的平面角的大小為90度即可得到證明;
(2)證明B1C⊥平面ABO,即可證明平面ABO⊥平面ACB1

解答 (1)解:兩個平面垂直的判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.
證明:設(shè)AB?α,AB⊥β,α∩β=CD,
則由AB?α,知AB、CD共面,
AB⊥β,CD?β,∴AB⊥CD,垂足為點(diǎn)B,
在平面β內(nèi)過點(diǎn)B作直線BE⊥CD,
則∠ABE是二面角α-CD-β的平面角,
又AB⊥BE,即二面角α-CD-β是直二面角,
∴α⊥β;
(2)證明:∵AC=AB1,∴三角形ACB1為等腰三角形,
∵O為B1C的中點(diǎn),
則AO⊥B1C,
菱形BB1C1C,則B1C⊥BC1,
AO∩BC1=O,AO,BC1⊆平面ABO,AO⊆平面ABO
則有B1C⊥平面ABO
又因?yàn)锽1C⊆平面ACB1
所以平面ABO⊥平面ACB1

點(diǎn)評 本題考查平面與平面垂直判定的證明與運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若M={n},則下列結(jié)論正確的是(  )
A.n∈MB.n≤MC.n∉MD.M=n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=log2(x+$\frac{6}{x}$-a)的定義域?yàn)锳,值域?yàn)锽.
(1)當(dāng)a=5時,求集合A;
(2)設(shè)I=R為全集,集合M={x|y=$\frac{{x}^{2}-x+1}{2(a-5)x+4(a-5)-8}$},若(∁IM)∪(∁IB)=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在梯形ABCD中,AB⊥BC,AD∥BC,BC=2AD=2AB=4,將梯形ABCD繞AD所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為$\frac{40π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某校為了解學(xué)生一次考試后數(shù)學(xué)、物理兩個科目的成績情況,從中隨機(jī)抽取了25位考
生的成績進(jìn)行統(tǒng)計分析.25位考生的數(shù)學(xué)成績已經(jīng)統(tǒng)計在莖葉圖中,物理成績?nèi)缦拢?br />90    71    64     66   72   39    49   46    55    56   85    52    6l
80    66    67    78    70   51    65   42    73    77   58     67

(1)請根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績統(tǒng)計如圖1;
(2)請根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學(xué)成績的頻數(shù)分布表及數(shù)學(xué)成績的頻率分布直方圖如圖2;
數(shù)學(xué)成績的頻數(shù)分布表如下表:
數(shù)學(xué)成績分組[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]
頻數(shù)       
(3)設(shè)上述樣本中第i位考生的數(shù)學(xué)、物理成績分別為xi,yi(i=1,2,3,…,25).通過對樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn):數(shù)學(xué)、物理成績具有線性相關(guān)關(guān)系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(x1-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)=5524,$\frac{4698}{5524}$≈0.85
求y關(guān)于x的線性回歸方程,并據(jù)此預(yù)測當(dāng)某考生的數(shù)學(xué)成績?yōu)?00分時,該考生的物理成績(精確到1分).
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{1}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.(理)已知向量$\overrightarrow a=(m,1-n)$,$\overrightarrow b=(1,2)$,其中m>0,n>0,若$\overrightarrow a$∥$\overrightarrow b$,則$\frac{1}{m}+\frac{1}{n}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=px3+x2+4x(常數(shù)p≠0)在x=x1處取得極大值M.
(1)當(dāng)M=-4時,求p的值;
(2)記f(x)=px3+x2+4x在x∈[-5,5]上的最小值為N,若N≥-5,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知定義在R上的偶函數(shù)f(x)在[0,+∞)單調(diào)遞增,且f(2)=0,則不等式f(x)•x>0的解集是(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知拋物線x2=2py(p>0)與直線3x-2y+1=0交于A,B兩點(diǎn),$|{AB}|=\frac{5}{8}\sqrt{13}$,點(diǎn)M在拋物線上,MA⊥MB.
(Ⅰ) 求p的值;
(Ⅱ) 求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案