6.(理)已知向量$\overrightarrow a=(m,1-n)$,$\overrightarrow b=(1,2)$,其中m>0,n>0,若$\overrightarrow a$∥$\overrightarrow b$,則$\frac{1}{m}+\frac{1}{n}$的最小值是3+2$\sqrt{2}$.

分析 利用向量共線定理可得:n+2m=1,再利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵$\overrightarrow a$∥$\overrightarrow b$,
∴1-n-2m=0,
化為n+2m=1,
又m>0,n>0,
則$\frac{1}{m}+\frac{1}{n}$=(n+2m)$(\frac{1}{m}+\frac{1}{n})$=3+$\frac{n}{m}$+$\frac{2m}{n}$≥3+2$\sqrt{\frac{n}{m}•\frac{2m}{n}}$=3+2$\sqrt{2}$,當(dāng)且僅當(dāng)n=$\sqrt{2}$m=$\sqrt{2}$-1時(shí)取等號(hào).
故答案為:3+2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了向量共線定理、“乘1法”與基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知角α終邊上點(diǎn)的坐標(biāo)(6,8),求sinα、cosα、tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an},觀察程序框圖,若k=5時(shí),分別有S=25.
(1)試求數(shù)列{an}的通項(xiàng);
(2)令bn=2${\;}^{{a}_{n}}$,求{bn}的前n項(xiàng)和Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知:如圖①,直線y=-$\sqrt{3}$x+$\sqrt{3}$與x軸、y軸分別交于A、B兩點(diǎn),兩動(dòng)點(diǎn)D、E分別從A、B兩點(diǎn)同時(shí)出發(fā)向O點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)到O點(diǎn)停止,如圖②);對(duì)稱軸過點(diǎn)A且頂點(diǎn)為M的拋物線y=a(x-k)2+h(a<0)始終經(jīng)過點(diǎn)E,過E作EG∥OA交拋物線于點(diǎn)G,交AB于點(diǎn)F,連結(jié)DE、DF、AG、BG,設(shè)D、E的運(yùn)動(dòng)速度分別是1個(gè)單位長(zhǎng)度/秒和$\sqrt{3}$個(gè)單位長(zhǎng)度/秒,運(yùn)動(dòng)時(shí)間為t秒.

(1)用含t代數(shù)式分別表示BF、EF、AF的長(zhǎng);
(2)當(dāng)t為何值時(shí),四邊形ADEF是菱形?
(3)當(dāng)△ADF是直角三角形,且拋物線的頂點(diǎn)M恰好在BG上時(shí),求拋物線的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,三棱柱ABC-A1B1C1中,側(cè)面BB1C1C為菱形,B1C的中點(diǎn)為O,AC=AB1

(1)文字?jǐn)⑹銎矫媾c平面垂直判定定理;
(2)求證:平面ABO⊥平面ACB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,若Ω是長(zhǎng)方體ABCD-A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點(diǎn),F(xiàn)為線段BB1上異于B1的點(diǎn),且EH∥A1D1,則下列結(jié)論中不正確的是( 。
A.EH∥FGB.四邊形EFGH是矩形
C.Ω是棱柱D.四邊形EFGH可能為梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在數(shù)列{an}中,a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$(n∈N*
(Ⅰ)求證:數(shù)列{$\frac{{a}_{n}+2}{{a}_{n}-2}$}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng);
(Ⅱ)求證:|a1-2|+|a2-2|+|a3-2|+…+|a2n-1-2|+|a2n-2|<$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)為奇函數(shù),當(dāng)x>0時(shí),f(x)=-6x+2x,則f(f(-1))=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知A={x|x-1>0},B={-2,-1,0,1,2},則A∩B=( 。
A.{-2,-1}B.{2}C.{1,2}D.{0,1,2}

查看答案和解析>>

同步練習(xí)冊(cè)答案