分析 (1)利用奇函數(shù)的定義進行判斷即可;
(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可得出結(jié)論.
解答 解:(1)函數(shù)的定義域為{x|x≠0}.
∵f(-x)=-x+$\frac{m}{-x}$=-x-$\frac{m}{x}$=-f(x),
∴f(x)是奇函數(shù);
證明:(2)m=4,f(x)=x+$\frac{4}{x}$,f′(x)=$\frac{{x}^{2}-4}{{x}^{2}}$,
x>2時,f′(x)>0,
∴f(x)是(2,+∞)上的增函數(shù),
∵f(x)是奇函數(shù),
∴f(x)在[-8,-2]上單調(diào)遞增,
∵f(-8)=-10,f(-2)=-4
∴f(x)在[-8,-2]上的值域是[-10,-4].
點評 本題考查奇函數(shù)的定義,考查函數(shù)的單調(diào)性與值域,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 公差為d的等差數(shù)列 | B. | 公差為cd的等差數(shù)列 | ||
C. | 不是等差數(shù)列 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于原點對稱 | B. | 關(guān)于直線y=x對稱 | C. | 關(guān)于x軸對稱 | D. | 關(guān)于y軸對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com