橢圓16x2+25y2=400的長(zhǎng)軸和短軸的長(zhǎng)、離心率分別是( 。
A、10,8,
3
5
B、5,4,
3
5
C、10,8,
4
5
D、5,4,
4
5
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:把橢圓的方程化為標(biāo)準(zhǔn)方程后,找出a與b的值,然后根據(jù)a2=b2+c2求出c的值,利用離心率公式,把a(bǔ)與c的值代入即可求出值.
解答: 解:把橢圓方程化為標(biāo)準(zhǔn)方程得:
x2
25
+
y2
16
=1
,得到a=5,b=4,
則c=3,
所以長(zhǎng)軸和短軸的長(zhǎng)分別為10,8,橢圓的離心率e=
c
a
=
3
5

故選A.
點(diǎn)評(píng):本題將一個(gè)橢圓方程化成標(biāo)準(zhǔn)方程形式,通過求長(zhǎng)軸和短軸的長(zhǎng),著重考查了橢圓的基本概念和簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若A(-1,2,3),B(2,-2,3),C(1,5,3),則AB邊上的中線的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m>l,則函數(shù)f(m)=
m
1
(1-
4
x2
)dx的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程為:x2-6x+y2-2y+1=0.直線方程為L(zhǎng):y=3x-2,則直線L與圓的位置關(guān)系是( 。
A、相交B、相離
C、相切D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為偶函數(shù),且f(2+x)=f(2-x),當(dāng)-2≤x≤0時(shí),f(x)=2x;若n∈N*,an=f(n),則a2013=(  )
A、2009
B、-2009
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
.
a
,
.
b
不共線,
.
AB
=2
.
a
+p
.
b
,
.
BC
=
.
a
+
.
b
,
.
CD
=
.
a
-2
.
b
,若A,B,D三點(diǎn)共線,則實(shí)數(shù)p的值是( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的n值為( 。ㄗⅲ骸皀=1”,即為“n←1”或?yàn)椤皀:=1”.)
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=cosx(0≤x≤
3
2
π
)與兩坐標(biāo)軸所圍成圖形的面積為( 。
A、4
B、3
C、
5
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:mx+8y+n=0,直線l2:2x+my-1=0,l1∥l2,兩平行直線間距離為
5
,而過點(diǎn)A(m,n)(m>0,n>0)的直線l被l1、l2截得的線段長(zhǎng)為
10
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案