求證:過已知平面外一點且平行于該平面的直線都在過已知點平行于該平面的平面內(nèi).
考點:直線與平面平行的性質(zhì)
專題:空間位置關(guān)系與距離
分析:根據(jù)條件先出已知,求證,利用反證法即可得到結(jié)論.
解答: 已知:A∉α,A∈a,a∈β,且a∥α,a?β,A∈b,b∥α,
求證:b?β
證明:反證法:
假設(shè)b?β,
∵A∈a,A∈b,
∴a∩b=A,
∵a∥α,b∥α且a∩b=A,
∴經(jīng)過直線a,b的平面γ,滿足γ∥α,
又∵β∥α,
∴這與過平面外一點,有且只要一個平面和已知平面平行矛盾,
故假設(shè)不成立,
∴恒有b?β成立.
點評:本題主要考查線面平行的判斷,利用反證法是解決幾何證明題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,其中俯視圖是圓,且該幾何體的體積為V1;直徑為2的球的體積為V2.則V1:V2=( 。
A、1:4B、1:2
C、1:1D、2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)+mx(x>-1).
(Ⅰ)若f(x)在x=1的切線平行于x軸,求實數(shù)m的值;
(Ⅱ)已知結(jié)論:對任意-1<a<b,存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
,求證:函數(shù)g(x)=
f(x2)-f(x1)
x2-x1
(x1-x)+f(x1)(其中-1<x1<x2)對任意x1<x<x2,都有f(x)>g(x);
(Ⅲ)已知正數(shù)λ1,λ2滿足λ12=1,求證:對任意-1<x1<x2,都有f(λ1x12x2)>λ1f(x1)+λ2f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若關(guān)于x的方程f(x)=-
5
2
x+b在區(qū)間[0,2]上恰有兩個不同的實數(shù)根,求實數(shù)b的取值范圍;
(Ⅲ)證明:對任意的正整數(shù)n,不等式2+
3
4
+
4
9
+…+
n+1
n2
>ln(n+1)都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
3
x3+
1
2
ax2-3x
,g(x)=xlnx
(Ⅰ)當(dāng)a=4時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)g(x)在區(qū)間[t,t+1](t>0)上的最小值;
(Ⅲ)若存在x1,x2∈[
1
e
,e](x1≠x2),使方程f′(x)=2g(x)成立,求實數(shù)a的取值范圍(其中e=2.71828…是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的圖象如圖所示,f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),且y=f(x+1)是奇函數(shù),則下列結(jié)論中    
①f(1-x)+f(x+1)=0
②f′(x)(x-1)≥0
③f(x)(x-1)≥0
正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,角A,B,C成等差數(shù)列,則cosB=
 
;若同時邊a,b,c成等比數(shù)列,則cos2A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin2θ+2cosθ=-2,則cosθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m、n是兩條不同的直線,α、β是兩個不同的平面.下列四個命題中,正確的是( 。
A、α∥β,m?α,n?β,則m∥n
B、α⊥β,m⊥β,則m∥α或m?α
C、α⊥β,m?α,n?β,則m⊥n
D、α∥β,m⊥β,n⊥α,則m∥n

查看答案和解析>>

同步練習(xí)冊答案