15.把函數(shù)f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$)的圖象沿x軸向左平移m個(gè)單位(m>0),所得函數(shù)為奇函數(shù),則m的最小值是( 。
A.$\frac{π}{2}$B.$\frac{3π}{8}$C.$\frac{π}{4}$D.$\frac{π}{8}$

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換可得f(x+m)=$\sqrt{2}$cos(2x-2m+$\frac{π}{4}$),利用誘導(dǎo)公式-2m+$\frac{π}{4}$=kπ+$\frac{π}{2}$,(k∈Z),f(x+m)為奇函數(shù),當(dāng)k=-1時(shí),m取最小值.

解答 解:函數(shù)f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$)的圖象沿x軸向左平移m個(gè)單位,
f(x+m)=$\sqrt{2}$cos(2x+2m+$\frac{π}{4}$),
函數(shù)為奇函數(shù),
∴2m+$\frac{π}{4}$=kπ+$\frac{π}{2}$,(k∈Z),
故當(dāng)k=0時(shí),m的最小值$\frac{π}{8}$,
故答案選:D.

點(diǎn)評(píng) 本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,考查三角函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若等比數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=1-2an,則數(shù)列{an}的公比是( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若$\frac{{a}_{7}}{{a}_{5}}$=$\frac{9}{13}$,則$\frac{{S}_{13}}{{S}_{9}}$=( 。
A.1B.-1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.甲、乙兩人射擊,中靶的概率分別為0.8,0.9,若兩人同時(shí)獨(dú)立射擊,他們都擊中靶的概率為0.72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類(lèi)”,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.給出如下四個(gè)結(jié)論:
①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整數(shù)a,b屬于同一‘類(lèi)’”的充要條件是“a-b∈[0]”.
其中,正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.圓的參數(shù)方程為$\left\{\begin{array}{l}x=3sinθ+4cosθ\\ y=4sinθ-3cosθ\end{array}$(θ為參數(shù)),則此圓的半徑為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$\vec a$=(1,2),$\vec b$=(2,1),$\vec u$=2$\vec a$-$\vec b$,$\vec v$=$\vec a$+m$\vec b$,若$\vec u∥\vec v$,則m的值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$-\frac{1}{2}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,已知tan($\frac{A+B}{2}$)=sinC,給出以下論斷:
①$\frac{tanA}{tanB}$=1;
②1<sinA+sinB≤$\sqrt{2}$;
③sin2A+cos2B=1;
④cos2A+cos2B=sin2C.
其中正確的是( 。
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.給出以下四個(gè)命題:
①若函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)f(2x)的定義域?yàn)閇0,4];
②函數(shù)f(x)=$\frac{1}{x}$的單調(diào)遞減區(qū)間是(-∞,0)∪(0,+∞);
③已知集合P={a,b},Q={-1,0,1},則映射f:P→Q中滿(mǎn)足f(b)=0的映射共有3個(gè);
④若f(x+y)=f(x)f(y),且f(1)=2,$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2014)}{f(2013)}$+$\frac{f(2016)}{f(2015)}$=2016.
其中正確的命題有③④ (寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案