精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=(x-a)2+(x-b)2+(x-c)2+
(a+b+c)2
3
(a,b,c為實數)
①求f(x)的最小值m(用a,b,c表示);
②若a-b+2c=3,求(1)中m的最小值.
考點:柯西不等式在函數極值中的應用
專題:選作題,不等式
分析:①將函數化簡,利用配方法,即可求f(x)的最小值m;
②由柯西不等式可得(a2+b2+c2)[12+(-1)2+22]≥(a-b+2c)2,即可得出結論.
解答: 解:①f(x)=3x2-(2a+2b+2c)x+a2+b2+c2+
(a+b+c)2
3

=3(x-
a+b+c
3
)2+a2+b2+c2

故當x=
a+b+c
3
時,m=f(x)min=a2+b2+c2…(3分)
②由柯西不等式可得(a2+b2+c2)[12+(-1)2+22]≥(a-b+2c)2
∵a-b+2c=3,
∴6m≥9,∴m得最小值為
3
2
,當且僅當a=
1
2
,b=-
1
2
,c=1
時取等號.               …(7分)
點評:本題考查函數的最小值,考查柯西不等式,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設曲線C的參數方程為
x=t
y=t2
(t為參數),若以直角坐標系的原點為極點,x軸的正半軸為極軸建立極坐標系,則曲線C的極坐標方程為( 。
A、sinθ=ρcos2θ
B、sinθ=ρcosθ
C、2sinθ=ρcos2θ
D、sinθ=2ρcos2θ

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F(1,0)橢圓C1的右焦點且F為雙曲線C2的右頂點,橢圓C1與雙曲線C2的一個交點是M(
2
3
3
3
3
).
(Ⅰ)求橢圓C1及雙曲線C2的方程;
(Ⅱ)若點P是雙曲線右支上的動點,直線PF交y軸于點Q,試問以線段PQ為直徑的圓是否恒過定點?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系xOy中,已知F1,F2分別是雙曲線G:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,雙曲線G與拋物線y2=-4x有一個公共的焦點,且過點(-
6
2
,1)
(Ⅰ)求雙曲線G的方程;
(Ⅱ)設直線l與雙曲線G相切于第一象限上的一點P,連接PF1,PF2,設l的斜率為k,直線PF1,PF2的斜率分別為k1,k2,試證明
1
kk1
+
1
kk2
為定值,并求出這個定值;
(Ⅲ)在第(Ⅱ)問的條件下,作F2Q⊥F2P,設F2Q交l于點Q,證明:當點P在雙曲線右支上移動時,點Q在一條定直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在底面為菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,點E在PD上,且PE:ED=2:1.
(Ⅰ)求證:PA⊥平面ABCD;
(Ⅱ)在棱PC上是否存在一點F,使得BF∥平面EAC?若存在,試求出PF的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
3
sinωx•cosωx-cos2ωx(ω>0)最小正周期為
π
2

(Ⅰ)求ω的值及函數f(x)的解析式;
(Ⅱ)若△ABC的三條邊a,b,c滿足a2=bc,a邊所對的角為A,求A的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
,橢圓上的點P與兩個焦點F1,F2構成的三角形的最大面積為1,
(1)求橢圓C的方程;
(2)若點Q為直線x+y-2=0上的任意一點,過點Q作橢圓C的兩條切線QD、QE(切點分別為D、E),試證明動直線DE恒過一定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于正項數列{an},定義Hn=
n
a1+2a2+3a3+…+nan
為{an}的“給力”值,現知數列{an}的“給力”值為Hn=
1
n
,則數列{an}的通項公式為an=
 

查看答案和解析>>

同步練習冊答案