2.已知8a3+9a+c=0,b3-$\frac{1}{{3}^}$-c=0,其中a,b,c均為非零實(shí)數(shù),則$\frac{a}$的值為-$\frac{1}{2}$.

分析 化簡(jiǎn)方程可得(2a)3+32a+b3-3-b=0,從而可得(2a)3+32a=(-b)3+3-b,再由y=x3+3x在R上是增函數(shù)可得2a=-b,從而解得.

解答 解:∵8a3+9a+c=0,
∴(2a)3+32a+c=0,
∵b3-$\frac{1}{{3}^}$-c=0,
∴b3-3-b-c=0,
∴(2a)3+32a+b3-3-b=0,
∴(2a)3+32a=(-b)3+3-b,
∵y=x3+3x在R上是增函數(shù),
∴2a=-b,
∴$\frac{a}$=-$\frac{1}{2}$.
故答案為:-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)的判斷與應(yīng)用,同時(shí)考查了方程與函數(shù)的關(guān)系應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知橢圓Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2c,左焦點(diǎn)為F,若直線y=x+c與橢圓交于A,B 兩點(diǎn),且|AF|=3|FB|,則橢圓的離心率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.以集合A={2,4,6,7,8,11,12,13}中的任意兩個(gè)元素分別為分子與分母構(gòu)成分?jǐn)?shù),已知取出的一個(gè)數(shù)是12,則取出的數(shù)構(gòu)成可約分?jǐn)?shù)的概率是$\frac{4}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若復(fù)數(shù)z=$\frac{i}{1+i}$+$\frac{2}{i}$(i為虛數(shù)單位),則|z|=(  )
A.$\frac{\sqrt{10}}{2}$B.2C.$\frac{3}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若輸入x=3,則輸出y的值為(  )
A.5B.9C.17D.33

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.橢圓$\frac{y^2}{5}$+x2=1的長(zhǎng)軸長(zhǎng)是$2\sqrt{5}$,焦點(diǎn)坐標(biāo)是(0,±2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校在高二年級(jí)實(shí)行選課走班教學(xué),學(xué)校為學(xué)生提供了多種課程,其中數(shù)學(xué)科提供5種不同層次的課程,分別稱為數(shù)學(xué)1、數(shù)學(xué)2、數(shù)學(xué)3、數(shù)學(xué)4、數(shù)學(xué)5,每個(gè)學(xué)生只能從這5種數(shù)學(xué)課程中選擇一種學(xué)習(xí),該校高二年級(jí)1800名學(xué)生中隨機(jī)抽取50名學(xué)生,統(tǒng)計(jì)他們的數(shù)學(xué)選課情況,制成如表所示的頻率分布表:
課程數(shù)學(xué)1數(shù)學(xué)2數(shù)學(xué)3數(shù)學(xué)4數(shù)學(xué)5合計(jì)
頻數(shù)201012ab50
頻率0.40.2p0.12q1
(1)求出表中頻率分布表中的值,并根據(jù)頻率分布表估計(jì)該校高二年級(jí)選修數(shù)學(xué)4、數(shù)學(xué)5的學(xué)生各約有多少人?
(2)先要從選修數(shù)學(xué)4和數(shù)學(xué)5的這(a+b)名學(xué)生中任選兩名學(xué)生參加一項(xiàng)活動(dòng),問選取的兩名學(xué)生都選修數(shù)學(xué)4的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)長(zhǎng)軸為4,離心率為$\frac{1}{2}$,點(diǎn)P為橢圓上異于頂點(diǎn)的任意一點(diǎn),過點(diǎn)P作橢圓的切線l交y軸于點(diǎn)A,直線l′過點(diǎn)P且垂直于l交y軸于B,試判斷以AB為直徑的圓能否經(jīng)過定點(diǎn),若能求出定點(diǎn)坐標(biāo),若不能說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:?m∈R,sinm=$\frac{1}{3}$,命題q:?x∈R,x2+mx+1>0恒成立,若p∧q為假命題,則數(shù)m的取值范圍是( 。
A.m≥2B.m≤-2C.m≤-2或m≥2D.-2≤m≤2

查看答案和解析>>

同步練習(xí)冊(cè)答案