分析 ①和④取滿足條件,不滿足結(jié)論,判斷為錯(cuò)誤;②利用余弦定理,將c2放大為ab,再結(jié)合均值定理即可證明cosC>$\frac{1}{2}$,從而證明C<$\frac{π}{3}$;③利用余弦定理,將c2放大為($\frac{a+b}{2}$)2,再結(jié)合均值定理即可證明cosC>$\frac{1}{2}$,從而證明C<$\frac{π}{3}$.
解答 解:①取A=30°,B=45°,滿足A<B,此時(shí)cos2A=cos60°=$\frac{1}{2}$,cos2B=cos90°=0,得到cos2A>cos2B,故①錯(cuò)誤;
②ab>c2⇒cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$>$\frac{2ab-ab}{2ab}$=$\frac{1}{2}$⇒C<$\frac{π}{3}$,故②正確;
③a+b>2c⇒cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$>$\frac{4({a}^{2}+^{2})-(a+b)^{2}}{8ab}$≥$\frac{3}{8}$×$\frac{{a}^{2}+^{2}}{ab}$-$\frac{1}{4}$≥$\frac{2}{4}$=$\frac{1}{2}$⇒C<$\frac{π}{3}$,故③正確;
④取a=b=2,c=1,滿足(a+b)c<2ab得:C<$\frac{π}{3}$<$\frac{π}{2}$,故④錯(cuò)誤;
故答案為:②③
點(diǎn)評(píng) 此題考查了余弦定理,放縮法證明不等式的技巧,反證法和舉反例法證明不等式,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a1=3,q=2 | B. | a1=-3,q=2 | C. | a1=3,q=-2 | D. | a1=-3,q=-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 某人打靶,射擊10次,擊中7次,那么此人中靶的概率為0.7 | |
B. | 一位同學(xué)做擲硬幣試驗(yàn),擲6次,一定有3次“正面朝上” | |
C. | 某地發(fā)行福利彩票,回報(bào)率為47%,有人花了100元錢買彩票,一定會(huì)有47元的回報(bào) | |
D. | 概率等于1的事件不一定為必然事件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com