18.在四棱錐中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD,G、H分別為AD、BC中點.證明:
(1)AB⊥平面VAD;
(2)平面VGH⊥平面VBC.

分析 (1)利用平面與平面垂直的性質(zhì),即可得出結(jié)論.
(2)證明BC⊥平面VGH,即可證明平面VGH⊥平面VBC.

解答 證明:(1)∵四棱錐V-ABCD中,底面ABCD為正方形,
∴AB⊥AD,
∵平面VAD⊥底面ABCD,平面VAD∩底面ABCD=AD,AB?平面ABCD,
∴AB⊥平面VAD(平面與平面垂直的性質(zhì));
(2)∵側(cè)面VAD是正三角形,G為AD的中點,
∴VG⊥AD,
∵平面VAD⊥底面ABCD,平面VAD∩底面ABCD=AD,
∴VG⊥底面ABCD,
∴VG⊥BC,
∵底面ABCD是正方形,G、H分別為AD、BC中點,
∴BC⊥GH,
∵VG∩GH=G,
∴BC⊥平面VGH,
∵BC?平面VBC,
∴平面VGH⊥平面VBC.

點評 本題考查線面垂直,平面與平面垂直,正確運用平面與平面垂直的性質(zhì)與判定是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若一個底面是正三角形的三棱柱的正視圖如圖所示,則體積等于( 。
A.4$\sqrt{3}$B.$\frac{4}{3}$$\sqrt{3}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對于函數(shù)f(x)=tan2x,下列選項中正確的是( 。
A.f(x)在(-$\frac{π}{2}$,$\frac{π}{4}$)上是遞增的B.f(x)在定義域上單調(diào)遞增
C.f(x)的最小正周期為πD.f(x)的所有對稱中心為($\frac{kπ}{4}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知A={x|0≤x≤4},B={y|0≤y≤2},從A到B的對應(yīng)法則分別是:
(1)$f:x→y=\frac{1}{2}x$; (2)f:x→y=x-2;
(3)$f:x→y=\sqrt{x}$; (4)f:x→y=|x-2|.
其中能夠成一 一映射的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,掛在下方的小球做上下運動,小球在t(s)時相對于平衡位置(即靜止的位置)的高度為h(單位:cm),由下列關(guān)系式確定:h=2sin(t+$\frac{π}{4}$),t∈[0,+∞).
以橫軸表示時間,縱軸表示高度,作出這個函數(shù)在長度為一個周期的閉區(qū)間的簡圖,并回答下列問題:
(1)小球在開始振動(t=0)時的位置在哪里?
(2)小球的最高、最低位置時h的值是多少?
(3)經(jīng)過多少時間小球振動一次(即周期是多少)?
(4)小球每1秒能往復(fù)振動多少次(即頻率是多少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=|3x-a|.
(Ⅰ)若不等式f(x)≤3的解集為{x|-$\frac{2}{3}$≤x≤$\frac{4}{3}$},求實數(shù)a的值.
(Ⅱ)在(Ⅰ)的條件下,令g(x)=f(x)+f(x+5),若不等式g(x)≥|m-1|對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{x-1}{{e}^{x-1}}$(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)已知函數(shù)y=g(x)對任意x滿足g(x)=f(4-x),證明當x>2時,f(x)>g(x);
(3)如果x1≠x2,且f(x1)=f(x2),證明x1+x2>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=x2-2x的定義域為{0,1,2,3},那么其值域為(  )
A.{y|-1≤y≤3}B.{y|0≤y≤3}C.{0,1,2,3}D.{-1,0,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正方體ABCD-A1B1C1D1(如圖),A1P=A1Q=A1R(P,Q,R在正方體的棱上),求證:平面PQR∥平面C1BD.

查看答案和解析>>

同步練習(xí)冊答案