【題目】在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,.

1)若是線段的中點,求證:平面;

2)若,求二面角的余弦值.

【答案】1)詳見解析;(2.

【解析】

試題(1)連接,利用平行線的傳遞性結合得到,再利用點的中點得到,從而證明四邊形為平行四邊形,從而得到,最終結合直線與平面的判定定理證明平面;(2)建立以點為坐標原點,以、所在直線為軸、軸、軸的空間直角坐標系,利用空間向量法來求二面角的余弦值.

試題解析:(1,,

,

由于,因此連接,由于,,

在平行四邊形中,是線段的中點,則,且,

因此,,所以四邊形為平行四邊形,,

平面平面,平面;

2,,

平面,、、兩兩垂直。

分別以、、所在直線為軸、軸、軸建立如圖所示的空間直角坐標系

、、,

,,又,,.

設平面的法向量,

,取,得,所以,

設平面的法向量,則

,,取,得,所以,

所以

故二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知F1,F2分別是雙曲線C的左、右焦點,若F2關于漸近線的對稱點恰落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線C的離心率為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,為正三角形,點在棱上,且,點分別為棱、的中點.

1)證明:平面

2)若,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

(2)若函數(shù)上的最小值為3,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班主任利用周末時間對該班級年最后一次月考的語文作文分數(shù)進行統(tǒng)計,發(fā)現(xiàn)分數(shù)都位于之間,現(xiàn)將所有分數(shù)情況分為、、、、共七組,其頻率分布直方圖如圖所示,已知.

1)求頻率分布直方圖中、的值;

2)求該班級這次月考語文作文分數(shù)的平均數(shù)和中位數(shù).(每組數(shù)據(jù)用該組區(qū)間中點值作為代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,四棱錐中,底面為矩形, 平面, ,點的中點.

)求證: 平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網(wǎng)絡知識問卷調(diào)查,每一位學生家長僅有一次參加機會,現(xiàn)對有效問卷進行整理,并隨機抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表).

1)請利用正態(tài)分布的知識求

2)該市食品安全檢測部門為此次參加問卷調(diào)查的學生家長制定如下獎勵方案:

①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:

②每次獲贈的隨機話費和對應的概率為:

獲贈的隨機話費(單位:元)

概率

市食品安全檢測部門預計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費?

附:①;②若;則,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求的單調(diào)區(qū)間.

2)設直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.

3)已知分別在,處取得極值,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,。

(Ⅰ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求滿足上述條件的最大整數(shù)M

(Ⅱ)如果對于任意的都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案