8.已知△ABC的三個頂點坐標(biāo)分別為A(8,5),B(4,-2),C(-6,3).
(1)求AC邊上的中線所在直線方程;
(2)求AB邊上的高所在直線方程.

分析 (1)線段AC的中點D坐標(biāo)為(1,4),利用兩點式方程能求出AC邊上的中線所在的直線方程;
(2)${k}_{AB}=\frac{7}{4}$,AB邊上高的斜率是-$\frac{4}{7}$,且過點C(-6,3),由此能求出AB邊上的高所在的直線方程.

解答 解:(1)線段AC的中點D坐標(biāo)為(1,4)
AC邊上的中線BD所在直線的方程是:$\frac{y-4}{-2-4}=\frac{x-1}{4-1}$,即2x+y-6=0;
(2)${k}_{AB}=\frac{7}{4}$,AB邊上高的斜率是-$\frac{4}{7}$,
AB邊上的高所在直線方程是y-3=$\frac{4}{7}$(x+6),即4x+7y+3=0.

點評 本題主要考查直線的斜率公式、用點斜式求直線的方程,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}中,若a1=$\frac{1}{2}$,an=$\frac{1}{1-{a}_{n-1}}$(n≥2,n∈N+),則a2017等于(  )
A.1B.-1C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|(4x-1)(5-x)<0},B={x∈Z|-3<x<6},則(∁RA)∩B的元素的個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-2≤0}\\{y≥0}\end{array}\right.$,則y的最大值為2,$\frac{y+1}{x+2}$的取值范圍是[$\frac{1}{3}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線方程為y=$\sqrt{3}$x,則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.樣本的數(shù)據(jù)如下:3,4,4,x,5,6,6,7,若該樣本平均數(shù)為5,則樣本方差為( 。
A.1.2B.1.3C.1.4D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題p:?x∈R,ex≥1,寫出命題p的否定:?x∈R,ex<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)直線3x+4y-5=0與圓C1:x2+y2=9交于A,B兩點,若圓C2的圓心在線段AB上,且圓C2與圓C1相切,切點在圓C1的劣弧AB上,則圓C2半徑的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知9a=3,lnx=a,則x=$\sqrt{e}$.

查看答案和解析>>

同步練習(xí)冊答案