函數(shù)y=cos(x-
π
3
)(x∈[
π
6
2
3
π])
的最小值是
 
考點(diǎn):余弦函數(shù)的圖象
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:x∈[
π
6
3
]⇒x-
π
3
∈[-
π
6
,
π
3
],利用余弦函數(shù)的單調(diào)性即可求得當(dāng)x∈[
π
6
,
3
]時(shí),y=cos(x-
π
3
)的最小值.
解答: 解:∵x∈[
π
6
,
3
],
∴x-
π
3
∈[-
π
6
,
π
3
],
1
2
≤cos(x-
π
3
)≤1,
∴當(dāng)x∈[
π
6
,
3
]時(shí),y=cos(x-
π
3
)的最小值ymin=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查余弦函數(shù)的圖象與性質(zhì),著重考查其單調(diào)性與最值,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某地一天從4~16時(shí)的溫度變化曲線近似滿足函數(shù)y=10sin(
π
8
x-
4
)+20,x∈[4,16].
(Ⅰ)求該地區(qū)這一段時(shí)間內(nèi)溫度的最大溫差;
(Ⅱ)若有一種細(xì)菌在15℃到25℃之間可以生存,那么在這段時(shí)間內(nèi),該細(xì)菌最多能生存多長時(shí)間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知角α的終邊與單位圓交點(diǎn)的橫坐標(biāo)是-
3
5
,角α+β的終邊與單位圓交點(diǎn)的縱坐標(biāo)是
5
13
,且α、β∈(0,π)則cosβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}、{bn}滿足an=2 
2n+3
5
,bn=
1
n
log2(a1a2a3…an),n∈N*,則數(shù)列{bn}的通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=0,an+1=an+2n-1(n∈N*),則數(shù)列{an}的通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a是正實(shí)數(shù),k=alga的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓過橢圓
x2
4
+
y2
3
=1
的右頂點(diǎn)和右焦點(diǎn),圓心在此橢圓上,那么圓心到橢圓中心的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα+tanβ+tanγ=
17
6
,cotα+cotβ+cotγ=-
4
5
,cotαcotβ+cotβcotγ+cotγcota=-
17
5
,則tan(α+β+γ)=
 

查看答案和解析>>

同步練習(xí)冊答案