9.計算:${∫}_{-2}^{2}$(x3+$\sqrt{4-{x}^{2}}$)dx=2π.

分析 分別根據(jù)定積分的計算法則和定積分的幾何意義計算即可.

解答 解:${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx表示以原點為圓心以2為半徑的圓的面積的二分之一,
∴${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx=$\frac{1}{2}$×4π=2π,
∵${∫}_{-2}^{2}$x3dx=$\frac{1}{4}$x4|${\;}_{-2}^{2}$=0,
∴${∫}_{-2}^{2}$(x3+$\sqrt{4-{x}^{2}}$)dx=2π,
故答案為:2π.

點評 本題考查了定積分的計算和定積分的幾何意義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點.
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)設(shè)AA1=AC=CB=2,AB=2$\sqrt{2}$,求異面直線BC1與A1D所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.判斷直線(a-1)x+y+a-3=0與圓x2+y2-4y=0的位置關(guān)系( 。
A.相離B.相交C.相切D.無法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.y=[sinx•cos]+[sinx+cosx]的值域為{-2,-1,1}([x]表示不超過實數(shù)x的最大整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)f(x)=1-4cosx-2sin2x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=$\sqrt{2}$,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=1,若點C滿足|$\overrightarrow{OA}$+$\overrightarrow{CB}$|=1,則|$\overrightarrow{OC}$|的取值范圍是[$\sqrt{6}$-1,$\sqrt{6}$+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知四邊形ABCD中,|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|=$\sqrt{2}$,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-$\sqrt{3}$,向量$\overrightarrow{CA}$+$\overrightarrow{AD}$和$\overrightarrow{AB}$-$\overrightarrow{AC}$的夾角為30°,則|$\overrightarrow{AC}$|的最大值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x+$\frac{2k+1}{x}$,其中k∈R.
(1)當(dāng)k≥0時,證明f(x)在[$\sqrt{2k+1}$,+∞)上單調(diào)遞增;
(2)若對任意k∈[1,7],不等式f(x)≥m在x∈[2,3]上恒成立,求實數(shù)m的取值范圍;
(3)若關(guān)于x的方程f(|2x--1|)-3k-2=0有三個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知拋物線E:x2=4y.
(1)求拋物線焦點坐標(biāo);
(2)若直線y=x+1與拋物線E相交于P,Q兩點,求|PQ|弦長.

查看答案和解析>>

同步練習(xí)冊答案