10.如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,將四邊形ABCD沿對(duì)角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是(2)(4).
(1)A′C⊥BD;  (2)∠BA′C=90°;
(3)CA′與平面A′BD所成的角為30°;
(4)四面體A′-BCD的體積為$\frac{1}{6}$.

分析 根據(jù)題意,依次分析命題:對(duì)于(1),可利用反證法說(shuō)明真假;對(duì)于(2),△BA'D為等腰Rt△,CD⊥平面A'BD,得BA'⊥平面A'CD,根據(jù)線面垂直可知∠BA′C=90°;對(duì)于(3)由CA'與平面A'BD所成的角為∠CA'D=45°知真假;對(duì)于(4),利用等體積法求出所求體積進(jìn)行判定即可,綜合可得答案.

解答 解:∵四邊形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,平面A'BD⊥平面BCD,則由A′D與BD不垂直,BD⊥CD,故BD與平面A′CD不垂直,則BD僅于平面A′CD與CD平行的直線垂直,故(1)不正確;
由題設(shè)知:△BA'D為等腰Rt△,CD⊥平面A'BD,得BA'⊥平面A'CD,于是(2)正確;
由BD⊥CD,平面A′BD⊥平面BCD,易得CD⊥平面A′BD,∴CD⊥A′B,CD⊥A′D,∵A′D=CD,∴△A′CD為等腰直角三角形,∴∠A′DC=45°,則CA′與平面A′BD所成的角為45°,知(3)不正確;
VA′-BCD=VC-A′BD=$\frac{1}{6}$,故(4)正確.
故答案為:(2)(4).

點(diǎn)評(píng) 本題主要考查了異面直線及其所成的角,以及三棱錐的體積的計(jì)算,同時(shí)考查了空間想象能力,論證推理能力,解題的關(guān)鍵是須對(duì)每一個(gè)進(jìn)行逐一判定.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足S5=5S2,a2n+1=2an+1(n∈N*),正項(xiàng)等比數(shù)列{bn}滿(mǎn)足b2=a2,b6=a8,數(shù)列{cn}滿(mǎn)足cn=$\left\{\begin{array}{l}{{a}_{n},}&{n=2k-1,k∈{N}^{*}}\\{_{n},}&{n=2k.k∈{N}^{*}}\end{array}\right.$.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{cn}的前n項(xiàng)和為T(mén)n(用n表示);
(3)是否存在正整數(shù)m,使得Tm=2cm+2,若存在,求出所有m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)的圖象是連續(xù)不斷的,現(xiàn)給出x,f(x)的部分對(duì)應(yīng)值如下表:
x-2-1123
f(x)-3-2124
則函數(shù)f(x)一定有零點(diǎn)的區(qū)間是( 。
A.(1,2)B.(2,3)C.(-2,-1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,現(xiàn)給出下列命題:
①若m?α,n?α,m∥β,n∥β,則α∥β;  
②若α⊥β,m?α,則m⊥β;
③若m⊥α,m∥β,則α⊥β;             
④若m∥n,m?α,則n∥α.
其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的焦距為2,且過(guò)橢圓右焦點(diǎn)F2與上頂點(diǎn)的直線l1與圓O:x2+y2=$\frac{1}{2}$相切.
(1)求橢圓E的方程;
(2)是否存在直線l2,滿(mǎn)足l2∥l1,并且l2與橢圓E交于A、B兩點(diǎn),以AB為直徑的圓與y軸相切,若存在,請(qǐng)求出l2的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.直線x-ysinθ+1=0(θ∈R)的傾斜角范圍是$[\frac{π}{4},\frac{3π}{4}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=|lnx|-k有兩個(gè)不同的零點(diǎn)a,b,則代數(shù)式|$\frac{{a}^{2}+^{2}+2}{a-b}$|的最小值是( 。
A.8$\sqrt{2}$B.8C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在平面上,Rt△ABC有勾股定理(即$∠C=\frac{π}{2}$,則有c2=a2+b2),類(lèi)比到空間中,已知三棱錐P-DEF中,∠PDF=$∠PDE=∠EDF=\frac{π}{2}$,用S1,S2,S3,S分別表示△PDF,△PDE,△EDF,△PEF的面積,則有結(jié)論:S2=S12+S22+S32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.用數(shù)歸納法證明當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除,k∈N*第二步是(  )
A.設(shè)n=2k+1時(shí)正確,再推n=2k+3正確
B.設(shè)n=2k-1時(shí)正確,再推n=2k+1時(shí)正確
C.設(shè)n=k時(shí)正確,再推n=k+2時(shí)正確
D.設(shè)n≤k(k≥1)正確,再推n=k+2時(shí)正確

查看答案和解析>>

同步練習(xí)冊(cè)答案