【題目】已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為2

1)求橢圓的方程;

2)設(shè)分別為橢圓的左、右頂點(diǎn),如圖,過點(diǎn)分別作直線,設(shè)直線交橢圓于另一點(diǎn)交橢圓于另一點(diǎn),分別過作橢圓的兩條切線,且兩條切線交于點(diǎn),分別過作橢圓的兩條切線,且兩條切線交于點(diǎn).證明:點(diǎn)在直線上.

【答案】1

2)證明見解析

【解析】

1)根據(jù)題意列出關(guān)于的方程組,解方程組即可得的值,即可求得橢圓的標(biāo)準(zhǔn)方程;

2)先設(shè)出過點(diǎn)的切線方程,再將此直線方程和橢圓方程聯(lián)立,利用直線與橢圓只有一個(gè)交點(diǎn)得點(diǎn)的坐標(biāo),設(shè)出點(diǎn)的坐標(biāo),結(jié)合點(diǎn)的坐標(biāo)可得直線的斜率,同理得直線的斜率,進(jìn)而可得點(diǎn)在直線上.

1)由橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為2

可得,解得,

所以橢圓的方程為

2)設(shè)過點(diǎn)的切線為

,整理得

,可得,化簡(jiǎn)得,

所以切點(diǎn)的橫坐標(biāo)為,所以,

由題意知

設(shè),則直線的斜率

因?yàn)?/span>三點(diǎn)共線,所以,即

,得,

又因?yàn)?/span>,所以,

所以

同理可得,,

所以三點(diǎn)共線,從而點(diǎn)在直線上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了打擊海盜犯罪,甲、乙、丙三國(guó)海軍進(jìn)行聯(lián)合軍事演習(xí),分別派出一艘軍艦A,B,C.演習(xí)要求:任何時(shí)刻軍艦A、B、C均不得在同一條直線上.

1)如圖1,若演習(xí)過程中,AB間的距離始終保持,BC間的距離始終保持,求的最大值.

2)如圖2,若演習(xí)過程中,AC間的距離始終保持,B、C間的距離始終保持.且當(dāng)變化時(shí),模擬海盜船D始終保持:到B的距離與AB間的距離相等,,與C在直線AB的兩側(cè),求CD間的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列的前n項(xiàng)和,,,是數(shù)列的前n項(xiàng)和,.

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),數(shù)列的前n項(xiàng)和為,若只存在2個(gè)正整數(shù)n滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間與極值;

2)當(dāng)函數(shù)有兩個(gè)極值點(diǎn)時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)在開學(xué)時(shí)舉行了入學(xué)檢測(cè).為了了解本年級(jí)學(xué)生寒假期間歷史的學(xué)習(xí)情況,現(xiàn)從年級(jí)名文科生中隨機(jī)抽取了名學(xué)生本次考試的歷史成績(jī),得到他們歷史分?jǐn)?shù)的頻率分布直方圖如圖.已知本次考試高三年級(jí)歷史成績(jī)分布區(qū)間為.

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生歷史成績(jī)的平均分,眾數(shù);(每組數(shù)據(jù)用該組的區(qū)間中點(diǎn)值作代表)

3)已知該學(xué)校每年高考有%的同學(xué)歷史成績(jī)?cè)谝槐揪以上,用樣本估計(jì)總體的方法,請(qǐng)你估計(jì)本次入學(xué)檢測(cè)歷史學(xué)科劃定的一本線該為多少分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年底,武漢發(fā)生了新冠肺炎疫情,2020年初開始蔓延.黨中央國(guó)務(wù)院面對(duì)“突發(fā)災(zāi)難”果斷采取措施,舉國(guó)上下,萬眾一心支援武漢,全國(guó)各地醫(yī)療隊(duì)陸續(xù)增援湖北,紛紛投身疫情防控與救治病人之中.為了分擔(dān)“抗疫英雄”的后顧之憂,某校教師志愿者開展“愛心輔導(dǎo)”活動(dòng),為抗疫前線醫(yī)務(wù)工作者子女開展在線輔導(dǎo).春節(jié)期間隨機(jī)安排甲乙兩位志愿者為一位初中生輔導(dǎo)功課共3次,每位志愿者至少輔導(dǎo)1次,每一次只有1位志愿者輔導(dǎo),到甲恰好輔導(dǎo)兩次的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】筆、墨、紙、硯是中國(guó)獨(dú)有的文書工具,即文房四寶”.筆、墨、紙、硯之名,起源于南北朝時(shí)期,其中的指的是宣紙,宣紙始于唐代,產(chǎn)于涇縣,而唐代涇縣隸屬于宣州府管轄,故因地而得名宣紙,宣紙按質(zhì)量等級(jí),可分為正牌和副牌(優(yōu)等品和合格品),某公司年產(chǎn)宣紙10000刀(每刀100張),公司按照某種質(zhì)量標(biāo)準(zhǔn)值給宣紙確定質(zhì)量等級(jí),如下表所示:

公式在所生產(chǎn)的宣紙中隨機(jī)抽取了一刀(100張)進(jìn)行檢驗(yàn),得到頻率分布直方圖如圖所示,已知每張正牌紙的利潤(rùn)是10元,副牌紙的利潤(rùn)是5元,廢品虧損10.

1)估計(jì)該公式生產(chǎn)宣紙的年利潤(rùn)(單位:萬元);

2)該公司預(yù)備購(gòu)買一種售價(jià)為100萬元的機(jī)器改進(jìn)生產(chǎn)工藝,這種機(jī)器的使用壽命是一年,只能提高宣紙的質(zhì)量,不影響產(chǎn)量,這種機(jī)器生產(chǎn)的宣紙的質(zhì)量標(biāo)準(zhǔn)值的頻率,如下表所示:

其中為改進(jìn)工藝前質(zhì)量標(biāo)準(zhǔn)值的平均值,改進(jìn)工藝后,每張正牌和副牌宣紙的利潤(rùn)都下降2元,請(qǐng)判斷該公司是否應(yīng)該購(gòu)買這種機(jī)器,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著一帶一路倡議的推進(jìn),中國(guó)與沿線國(guó)家旅游合作越來越密切,中國(guó)到一帶一路沿線國(guó)家的游客人也越來越多,如圖是20132018年中國(guó)到一帶一路沿線國(guó)家的游客人次情況,則下列說法正確的是(

20132018年中國(guó)到一帶一路沿線國(guó)家的游客人次逐年增加

20132018年這6年中,2014年中國(guó)到一帶一路沿線國(guó)家的游客人次增幅最小

20162018年這3年中,中國(guó)到一帶一路沿線國(guó)家的游客人次每年的增幅基本持平

A.①②③B.②③C.①②D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為為橢圓上任意一點(diǎn),且已知.

1)若橢圓的短軸長(zhǎng)為,求的最大值;

2)若直線交橢圓的另一個(gè)點(diǎn)為,直線軸于點(diǎn),點(diǎn)關(guān)于直線對(duì)稱點(diǎn)為,且,三點(diǎn)共線,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案