【題目】為了打擊海盜犯罪,甲、乙、丙三國海軍進行聯(lián)合軍事演習,分別派出一艘軍艦A,B,C.演習要求:任何時刻軍艦AB、C均不得在同一條直線上.

1)如圖1,若演習過程中,A、B間的距離始終保持,B,C間的距離始終保持,求的最大值.

2)如圖2,若演習過程中,A,C間的距離始終保持,BC間的距離始終保持.且當變化時,模擬海盜船D始終保持:到B的距離與A、B間的距離相等,,與C在直線AB的兩側(cè),求CD間的最大距離.

【答案】12CD間的最大距離為

【解析】

1)由正弦定理求出的取值范圍后可得的最大值;

2))以C為坐標原點,CB所在直線為x軸,建立如圖所示的平面直角坐標系xOy,

,由,得A在圓.設(shè),得,由到,與C在直線AB的兩側(cè),可,從而得點坐標,代入點軌跡方程可得點軌跡方程,知軌跡為圓,從而由點與圓的位置關(guān)系可得最大距離.

因為任何時刻軍艦AB,C均不得在同一條直線上,所以構(gòu)成,記角A,B,C的對邊分別為a,b,c.

1)在中,,

由正弦定理,得

所以.

又因為.所以

答:∠ACB的最大值是.

2)以C為坐標原點,CB所在直線為x軸,建立如圖所示的平面直角坐標系xOy

因為,所以A在圓.

設(shè),則.

因為D始終保持:到B的距離與A,B間的距離相等,

,與C在直線AB的兩側(cè),

所以,所以.

代入方程中,得,

所以D在以點為圓心1為半徑的圓上,

.

答:CD間的最大距離為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且的最小值為

1)求實數(shù)的值及函數(shù)的單調(diào)遞減區(qū)間;

2)當時,若函數(shù)有且僅有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)有且只有一個零點,求實數(shù)的值

2)若對任意恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中, ,平面平面

Ⅰ)求證: ;

Ⅱ)在線段上是否存在點,使直線與平面所成的角為?若存在,求的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示多面體中,AD⊥平面PDC,四邊形ABCD為平行四邊形,點EF分別為AD,BP的中點,AD3,AP3PC

1)求證:EF//平面PDC;

2)若∠CDP120°,求二面角ECPD的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,從P中任取2個元素,分別記為ab.

1)若,隨機變量X表示ab3除的余數(shù),求的概率;

2)若),隨機變量Y表示5除的余數(shù),求Y的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中e是自然對數(shù)的底數(shù)

1)若,求的最小值;

2)記fx)的圖象在處的切線的縱截距為,求的極值;

3)若2個零點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).

1)討論的極值;

2)當時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,短軸的一個端點到右焦點的距離為2

1)求橢圓的方程;

2)設(shè)分別為橢圓的左、右頂點,如圖,過點分別作直線,設(shè)直線交橢圓于另一點交橢圓于另一點,分別過作橢圓的兩條切線,且兩條切線交于點,分別過作橢圓的兩條切線,且兩條切線交于點.證明:點在直線上.

查看答案和解析>>

同步練習冊答案