分析 化簡函數(shù)得出函數(shù)f(x)=log2$\frac{{x}^{2}-1}{x+1}$=log2(x-1),利用復(fù)合函數(shù)的單調(diào)性求解即可.
解答 解:∵函數(shù)f(x)=log2(x2-1)-log2(x+1),
∴函數(shù)f(x)=log2$\frac{{x}^{2}-1}{x+1}$=log2(x-1)
∵x∈[3.5],
∴2≤x-1≤4
∴1≤log2(x-1)≤2,
∴值域?yàn)閇1,2]
故答案為:[1,2]
點(diǎn)評(píng) 本題主要考查了對數(shù)函數(shù)域二次函數(shù)復(fù)合而成的復(fù)合函數(shù)的定義域、值域,解題的關(guān)鍵是靈活利用對數(shù)函數(shù)的定義域及復(fù)合函數(shù)的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (5-2$\sqrt{6}$,4-$\sqrt{13}$) | B. | (8-2$\sqrt{15}$,4-2$\sqrt{3}$) | C. | (5-2$\sqrt{6}$,4-2$\sqrt{3}$) | D. | (8-2$\sqrt{15}$,4-$\sqrt{13}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[-3,-2]上是增函效 | |
B. | 在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[-3,-2]上是減函數(shù) | |
C. | 在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[-3,-2]上是增函數(shù) | |
D. | 在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[-3,-2]上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com