4.設(shè)集合M={x|2x2-x-6<0},N={x|0<x≤4},則M∩N等于(  )
A.(0,2)B.(-$\frac{3}{2}$,0)C.(-2,3)D.(-2,2)

分析 求出M中不等式的解集確定出M,找出M與N的交集即可.

解答 解:由M中不等式變形得:(2x+3)(x-2)<0,
解得:-$\frac{3}{2}$<x<2,即M=(-$\frac{3}{2}$,2),
∵N=[0,4],
∴M∩N=(0,2).
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知直線(3-7a+2a2)x-(9-a2)y+3a2=0的傾斜角的正弦為$\frac{{\sqrt{2}}}{2}$,則a的值為(  )
A.$-\frac{2}{3}$或4B.3或$-\frac{2}{3}$C.$-\frac{2}{3}$D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD=2PD,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)若PD=AD,求PA與面PBD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合P={x|-1<x<b,b∈N},Q={x|x2-3x<0,x∈Z},若P∩Q≠∅,則b的最小值等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知平面向量$\overrightarrow{m}$=(1,$\sqrt{3}$),$\overrightarrow{n}$=(a,3)(a∈R),$\overrightarrow{p}$=($\sqrt{3}$,1),且$\overrightarrow{n}$⊥$\overrightarrow{p}$,則$\overrightarrow{m}$與$\overrightarrow{n}$的夾角是( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某種鮮花進(jìn)價(jià)每束2.5元,售價(jià)每束5元,若賣不出,則以每束1.6元的價(jià)格處理掉,某節(jié)日鮮花的需求量X(單位:束)的分布列為
X200300400500
P0.200.350.300.15
(Ⅰ)若進(jìn)鮮花400束,是寫出銷售量S(單位:束)的分布列,并求利潤(rùn)Y的均值.
(Ⅱ)若進(jìn)鮮花n束(300<n≤500),求n取何值時(shí)可使利潤(rùn)Y的均值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.等比數(shù)列{an}中,a1=2,a3=8,則S4=-10或30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c(c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c,則稱f(x)為“平底型”函數(shù).
判斷f1(x)=|2x-1|+|2x-2|,f2(x)=|2x-1|-|2x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)f(x)=$\sqrt{2{x}^{2}+x-3}+lo{g}_{3}(3+2x-{x}^{2})$的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案