8.動圓M經(jīng)過雙曲線x2-$\frac{{y}^{2}}{15}$=1左焦點且與直線x=4相切,則圓心M的軌跡方程是( 。
A.y2=8xB.y2=-8xC.y2=16xD.y2=-16x

分析 求出雙曲線的焦點,根據(jù)動圓M經(jīng)過雙曲線x2-$\frac{{y}^{2}}{15}$=1左焦點且與直線x=4相切,可得M到(-4,0)的距離等于M到直線x=4的距離,利用拋物線的定義,即可得出結(jié)論.

解答 解:雙曲線x2-$\frac{{y}^{2}}{15}$=1左焦點為(-4,0),則
∵動圓M經(jīng)過雙曲線x2-$\frac{{y}^{2}}{15}$=1左焦點且與直線x=4相切,
∴M到(-4,0)的距離等于M到直線x=4的距離,
∴M的軌跡是以(-4,0)為焦點的拋物線,
∴圓心M的軌跡方程是y2=-16x.
故選:D.

點評 本題考查雙曲線的幾何性質(zhì),考查拋物線的定義,正確運用拋物線的定義是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.德國著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=$\left\{\begin{array}{l}1,x為有理數(shù)\\ 0,x為無理數(shù)\end{array}$稱為狄利克雷函數(shù),關(guān)于函數(shù)f(x)有以下四個命題:
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個非零有理數(shù)T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的序號為①②③④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點P(x,y)是圓x2+y2=2y上的動點,
(1)求z=2x+y的取值范圍; 
(2)若x+y+a≥0恒成立,求實數(shù)a的取值范圍.
(3)求x2+y2-16x+4y的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A(1,-4),B(-5,4),則以AB為直徑的圓的標(biāo)準(zhǔn)方程是(x+2)2+y2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某班高三期中考試后,對考生的數(shù)學(xué)成績進(jìn)行統(tǒng)計(考生成績均不低于90分,滿分150分),將成績按如下方式分成六組,第一組[90,100)、第二組[100,110)…第六組[140,150].得到頻率分布直方圖如圖所示,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有2人
(Ⅰ)請補(bǔ)充完整頻率分布直方圖;
(Ⅱ)現(xiàn)從成績在[130,150]的學(xué)生中任選兩人參加校數(shù)學(xué)競賽,求恰有一人成績在[130,140]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)命題p:若a>b,則$\frac{1}{a}$<$\frac{1}$;命題q:$\frac{1}{ab}$<0?ab<0.給出下面四個復(fù)合命題:①p∨q;②p∧q;③(¬p)∧(¬q);④(¬p)∨(¬q).其中真命題的個數(shù)有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$滿足對任意x1≠x2都有(x1-x2)•(f(x1)-f(x2))<0成立,那么a的取值范圍是( 。
A.(0,1)B.(0,$\frac{1}{2}$)C.[$\frac{1}{4}$,1)D.[$\frac{1}{4}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓N經(jīng)過點A(3,1),B(-1,3),且它的圓心在直線3x-y-2=0上.
(Ⅰ)求圓N的方程;
(Ⅱ)求圓N關(guān)于直線x-y+3=0對稱的圓的方程.
(Ⅲ)若點D為圓N上任意一點,且點C(3,0),求線段CD的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)的反函數(shù)是y=$\frac{1}{{3}^{x}}$,則函數(shù)f(2x-x2)的減區(qū)間為(0,1].

查看答案和解析>>

同步練習(xí)冊答案