16.已知f(x)是R上的奇函數(shù),f(1)=2,且對(duì)任意x∈R都有f(x+6)=f(x)+f(3)成立,則f(3)=0;f(2013)=0.

分析 根據(jù)f(x+6)=f(x)+f(3)需要令x=-3,代入求出f(-3)=0,由奇函數(shù)的定義求出f(3)=0,代入關(guān)系式求出此函數(shù)的周期,利用周期性即可求出f(2013).

解答 解:由題意知,f(x+6)=f(x)+f(3),令x=-3,
∴f(3)=f(-3)+f(3),即f(-3)=0,
∵f(x)是R上的奇函數(shù),∴f(3)=0,
故f(x+6)=f(x),
∴f(x)是周期為6的周期函數(shù),
∴f(2013)=f(6×335+3)=f(3)=0,
故答案為:0,0.

點(diǎn)評(píng) 本題是一道抽象函數(shù)問(wèn)題,題目的設(shè)計(jì)“小而巧”,解題的關(guān)鍵是巧妙的賦值,利用其奇偶性得到函數(shù)的周期性,再利用周期性求函數(shù)值.靈活的“賦值法”是解決抽象函數(shù)問(wèn)題的基本方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x3+ax2+bx+a2(ab∈R)
(1)若函數(shù)f(x)在x=1處有極值10,求b的值;
(2)若對(duì)任意a∈[-4,+∞),f(x)在x∈[0,2]上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在區(qū)間[1,5]和[2,4]分別取一個(gè)數(shù),記為a,b,則方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦點(diǎn)在y軸上且離心率小于$\frac{{\sqrt{3}}}{2}$的橢圓的概率為( 。
A.$\frac{3}{8}$B.$\frac{15}{32}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+bx+1(a>0)滿足f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立.
(1)求f(x)的表達(dá)式;
(2)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)$y=cos(2x+\frac{π}{3})$的定義域是[a,b],值域?yàn)?[-\frac{1}{2},1]$,則b-a的最大值與最小值之和為( 。
A.B.πC.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,D為邊BC上任意一點(diǎn),$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λμ的最大值為( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,再向上平移1個(gè)單位后得到的函數(shù)圖象對(duì)應(yīng)的表達(dá)式為y=2sin2x,則函數(shù)f(x)的表達(dá)式可以是( 。
A.f(x)=2sinxB.f(x)=2cosxC.f(x)=cos2xD.f(x)=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知曲線C:y=$\sqrt{4-{x^2}}$(0≤x≤2)與函數(shù)f(x)=logax(a>1)及它的反函數(shù)g(x)的圖象分別交于A(x1,y1),B(x2,y2)兩點(diǎn),則x12+x22的值為(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知命題 p:|x+2|>1,命題 q:x<a,且¬q 是¬p 的必要不充分條件,則 a 的取值范圍可以是(  )
A.a≥3B.a≤-3C.a<-3D.a>3

查看答案和解析>>

同步練習(xí)冊(cè)答案