8.將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,再向上平移1個(gè)單位后得到的函數(shù)圖象對(duì)應(yīng)的表達(dá)式為y=2sin2x,則函數(shù)f(x)的表達(dá)式可以是( 。
A.f(x)=2sinxB.f(x)=2cosxC.f(x)=cos2xD.f(x)=sin2x

分析 利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將函數(shù)y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位,可得y=f(x-$\frac{π}{4}$)的圖象;
再向上平移1個(gè)單位后,得到的函數(shù)圖象對(duì)應(yīng)的表達(dá)式為y=f(x-$\frac{π}{4}$)+1=2sin2x,
∴f(x-$\frac{π}{4}$)=2sin2x-1=-cos2x=sin2(x-$\frac{π}{4}$),∴f(x)=sin2x,
故選:D.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.四邊形ABCD的內(nèi)角A與C互補(bǔ),AB=BC=2,CD=3,DA=1.
(1)求角C和BD的長(zhǎng);
(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若a>b>0且a3-b3=a2-b2,則a+b的取值范圍是( 。
A.(0,+∞)B.(1,+∞)C.(1,2)D.$({1,\frac{4}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)是R上的奇函數(shù),f(1)=2,且對(duì)任意x∈R都有f(x+6)=f(x)+f(3)成立,則f(3)=0;f(2013)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)集合M={1,2,3,…,n}(n∈N*),對(duì)M的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍M的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為Sn,Sn=(n-1)2n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}是等差數(shù)列,若它的前n項(xiàng)和Sn有最小值,且$\frac{{a}_{2012}}{{a}_{2011}}$<-1,則使Sn>0成立的最小自然數(shù)n的值為( 。
A.4022B.2022C.4021D.2021

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x${\;}^{-{k}^{2}+k+2}$(k∈Z)且f(2)<f(3)
(1)求實(shí)數(shù)k的值;
(2)試判斷是否存在正數(shù)p,使函數(shù)g(x)=1-pf(x)+(2p-1)x在區(qū)間[-1,2]上的值域?yàn)閇-4,$\frac{17}{8}$],若存在,求出這個(gè)p的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.對(duì)于函數(shù)f(x)=a-$\frac{2}{{{2^x}+1}}$(a∈R)
(Ⅰ)探索函數(shù)f(x)的單調(diào)性;
(Ⅱ)是否存在實(shí)數(shù)a,使函數(shù)f(x)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一個(gè)正方體的平面展開圖及該正方體的直觀圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N.
(1)請(qǐng)將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需要說明理由);
(2)求證:直線MN∥平面BDH;
(3)求二面角B-DH-C的平面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案