A. | 1 | B. | -1 | C. | 2 | D. | -2 |
分析 利用待定系數(shù)法先求出函數(shù)f(x)在[-1,1]上的表達(dá)式,利用分段函數(shù)的積分公式進(jìn)行計(jì)算即可.
解答 解:當(dāng)-1≤x≤0時(shí),函數(shù)f(x)是線(xiàn)段,過(guò)(-1,0),(0,1),
此時(shí)對(duì)應(yīng)的直線(xiàn)方程為$\frac{x}{-1}+\frac{y}{1}$=1,即-x+y=1,
則此時(shí)y=f(x)=x+1,-1≤x≤0,
當(dāng)0≤x≤1時(shí),函數(shù)f(x)是線(xiàn)段,過(guò)(1,0),(0,1),
此時(shí)對(duì)應(yīng)的直線(xiàn)方程為$\frac{x}{1}+\frac{y}{1}=1$,即x+y=1,
則此時(shí)y=f(x)=-x+1,0≤x≤1,
則${∫}_{-1}^{1}$[(x+2)f(x)]dx=∫${\;}_{-1}^{0}$[(x+2)(x+1)]dx+${∫}_{0}^{1}$[(x+2)(-x+1)]dx
=∫${\;}_{-1}^{0}$(x2+3x+2)dx+${∫}_{0}^{1}$(-x2-x+2)dx
=($\frac{1}{3}$x3+$\frac{3}{2}$x2+2x)|${\;}_{-1}^{0}$+(-$\frac{1}{3}$x3-$\frac{1}{2}$x2+2x)|${\;}_{0}^{1}$
=0-(-$\frac{1}{3}$+$\frac{3}{2}$-2)+(-$\frac{1}{3}$-$\frac{1}{2}$+2)
=$\frac{1}{3}$-$\frac{3}{2}$+2-$\frac{1}{3}$-$\frac{1}{2}$+2=2,
故選:C.
點(diǎn)評(píng) 本題主要考查函數(shù)積分的計(jì)算,利用待定系數(shù)法求出函數(shù)的解析式以及利用分段函數(shù)的積分公式是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $3\sqrt{5}$ | B. | $3\sqrt{2}$ | C. | $2\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{13}$ | B. | 13 | C. | $\sqrt{13}$ | D. | 26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{13}{16}$ | B. | $\frac{13}{12}$ | C. | $\frac{13}{8}$ | D. | $\frac{13}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 10 | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 2-i | C. | 2i | D. | 2+2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com