1.“xy≠0”是“x≠0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 “xy≠0”?x≠0且y≠0,反之不成立.即可得出.

解答 解:“xy≠0”?x≠0且y≠0,反之不成立.
∴“xy≠0”是“x≠0”的充分不必要條件.
故選:A.

點(diǎn)評(píng) 本題考查了不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在Rt△ABC中,∠C=90°,AC=6,BC=4,點(diǎn)D滿(mǎn)足$\overrightarrow{AD}$=-2$\overrightarrow{DB}$,若以直角頂點(diǎn)C為坐標(biāo)原點(diǎn),CB,CA所在直線(xiàn)為x軸、y軸建立直角坐標(biāo)系,則$\overrightarrow{CD}$的坐標(biāo)為($\frac{8}{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在數(shù)列{an}中,an+1=3an+3n,a1=1,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.凸四邊形OABC中,$\overrightarrow{OB}=(2,4),\overrightarrow{AC}$=(-2,1),則該四邊形的面積為( 。
A.$\sqrt{5}$B.$2\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若(x-$\frac{a}{x}$)6展開(kāi)式的常數(shù)項(xiàng)為20,則常數(shù)a的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某中學(xué)對(duì)1000名學(xué)生的英語(yǔ)拓展水平測(cè)試成績(jī)進(jìn)行統(tǒng)計(jì),得到樣本頻率分布直方圖如圖所示,現(xiàn)規(guī)定不低于80分為優(yōu)秀,則優(yōu)秀人數(shù)是(  )
A.250B.200C.150D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖所示,在△DEF中,M是在線(xiàn)段DF上,DE=3,DM=EM=2,sin∠F=$\frac{3}{5}$=,則邊EF的長(zhǎng)為$\frac{5\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知p:函數(shù)f(x)=(x-a)2在(-∞,-1)上是減函數(shù),$q:?x>0,a≤\frac{{{x^2}+1}}{x}$恒成立,則¬p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,A為左頂點(diǎn),B為短軸端點(diǎn),F(xiàn)為右焦點(diǎn),且AB⊥BF,則橢圓的離心率為( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{3}+1}}{2}$D.$\frac{{\sqrt{3}-1}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案