5.已知F(x)=f(x)-g(x),其中f(x)=$lo{g}_{\frac{1}{2}}$(x-2),當(dāng)點(x,y)在y=f(x)的圖象上時,就有(2x,2y)在y=g(x)的圖象上.
(1)求g(x)的解析式;
(2)解不等式F(x)≥0.

分析 (1)設(shè)g(x)圖象上一點為(m,n)則m=2x,n=2y,從而x=$\frac{1}{2}$m,y=$\frac{1}{2}$n 代入f(x)的解析式,可求出所求;
(2)根據(jù)對數(shù)的運算性質(zhì),求出F(x)的解析式,解對數(shù)不等式可得答案.

解答 解:①設(shè)g(x)圖象上一點為(m,n)
則m=2x,n=2y,
∴x=$\frac{1}{2}$m,y=$\frac{1}{2}$n 代入f(x)=$lo{g}_{\frac{1}{2}}$(x-2),
有$\frac{1}{2}$n=$lo{g}_{\frac{1}{2}}$($\frac{1}{2}$m-2),即n=$lo{g}_{\frac{1}{2}}$($\frac{1}{2}$m-2)2
即g(x)=$lo{g}_{\frac{1}{2}}$($\frac{1}{2}$x-2)2,
②F(x)=f(x)-g(x)=$lo{g}_{\frac{1}{2}}$(x-2)-$lo{g}_{\frac{1}{2}}$($\frac{1}{2}$x-2)2,
=$lo{g}_{\frac{1}{2}}$$\frac{x-2}{(\frac{1}{2}x-2)^{2}}$,
若F(x)≥0,則0<$\frac{x-2}{(\frac{1}{2}x-2)^{2}}$≤1,
解得:x∈(2,6-2$\sqrt{3}$]∪[6+2$\sqrt{3}$,+∞)

點評 本題考查的知識點是軌跡方程,函數(shù)解析式的求法,對數(shù)不等式的解法,對數(shù)的運算性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=x2lnx-a(x2-1),a∈R,若當(dāng)x≥1時,f(x)≥0恒成立,則a的取值范圍是( 。
A.(-∞,-1]B.(-∞,0]C.(-∞,1]D.$(-∞,\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,設(shè)點P(1,1)在矩陣$M=[{\begin{array}{l}1&a\\ b&4\end{array}}]$對應(yīng)的變換下得到點Q(3,7),求M-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=|x+3|-m+1,m>0,f(x-3)≥0的解集為(-∞,-2]∪[2,+∞).
(Ⅰ)求m的值;
(Ⅱ)若?x∈R,f(x)≥|2x-1|-t2+$\frac{5}{2}$t成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若關(guān)于x的不等式|x+1|-|x-2|>log2a的解集為R,則實數(shù)a的取值范圍為(  )
A.(0,8)B.(8,+∞)C.(0,$\frac{1}{8}$)D.($\frac{1}{8}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=1,A,B分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標(biāo)方程,并求A,B的極坐標(biāo);
(2)設(shè)M為曲線C上的一個動點,$\overrightarrow{OQ}$=λ•$\overrightarrow{OM}$(λ>0),|$\overrightarrow{OM}$|•|$\overrightarrow{OQ}$|=2,求動點Q的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若函數(shù)f(x)=lnx-x-mx在區(qū)間[1,e2]內(nèi)有唯一的零點,則實數(shù)m的取值范圍是[-1,$\frac{2}{{e}^{2}}$-1)∪{$\frac{1}{e}$-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l:$\left\{\begin{array}{l}{x=tcosα+m}\\{y=tsinα}\end{array}\right.$(t為參數(shù))恒經(jīng)過橢圓C:$\left\{\begin{array}{l}x=\sqrt{2}cosϕ\\ y=sinϕ\end{array}$(φ為參數(shù))的右焦點F.
(1)求m的值;
(2)當(dāng)α=$\frac{π}{4}$時直線l與橢圓C相交于A,B兩點,求FA•FB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(Ⅰ)已知命題p:函數(shù)f(x)=(2a-5)x是R上的減函數(shù);
命題q:在x∈(1,2)時,不等式x2-ax+2<0恒成立,若p∨q是真命題,求實數(shù)a的取值范圍;
(Ⅱ)設(shè)條件p:2x2-3x+1≤0,條件q:x2-(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案