10.在直角坐標(biāo)系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=1,A,B分別為C與x軸,y軸的交點.
(1)寫出C的直角坐標(biāo)方程,并求A,B的極坐標(biāo);
(2)設(shè)M為曲線C上的一個動點,$\overrightarrow{OQ}$=λ•$\overrightarrow{OM}$(λ>0),|$\overrightarrow{OM}$|•|$\overrightarrow{OQ}$|=2,求動點Q的極坐標(biāo)方程.

分析 (1)由曲線C的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=1,展開為$\frac{1}{2}ρcosθ$+$\frac{\sqrt{2}}{2}$ρsinθ=1,利用互化公式可得直線C的直角坐標(biāo)方程,分別取θ=0,θ=$\frac{π}{2}$時,計算出ρ,即可得出直角坐標(biāo).
(2)由條件可設(shè)Q(ρ,θ)$M({ρ_1}{,^{\;}}θ)$,由已知可得ρ•ρ1=2,${ρ}_{1}cos(θ-\frac{π}{3})$=2,聯(lián)立解出ρj即可得出方程.

解答 解:(1)由曲線C的極坐標(biāo)方程為ρcos(θ-$\frac{π}{3}$)=1,展開為$\frac{1}{2}ρcosθ$+$\frac{\sqrt{2}}{2}$ρsinθ=1,可得直線C的直角坐標(biāo)方程為$\frac{1}{2}$x+$\frac{\sqrt{3}}{2}$y=1,即x+$\sqrt{3}$y=2.
當(dāng)θ=0時,ρ=2,∴A(2,0);
當(dāng)θ=$\frac{π}{2}$時,ρ=$\frac{2\sqrt{3}}{3}$,∴B$(\frac{2\sqrt{3}}{3},\frac{π}{2})$.
(2)由條件可設(shè)Q(ρ,θ),$M({ρ_1}{,^{\;}}θ)$,
由條件$⇒\left\{\begin{array}{l}ρ•{ρ_1}=2\\{ρ_1}cos(θ-\frac{π}{3})=2\end{array}\right.⇒ρ=2cos(θ-\frac{π}{3})$為所求Q的極坐標(biāo)方程.

點評 本題考查了極坐標(biāo)與直角坐標(biāo)方程互化、極坐標(biāo)方程的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{|x-3|-1,x∈[1,+∞)}\end{array}\right.$,則函數(shù)F(x)=f(x)-a,(0<a<1)的所有零點之和為( 。
A.1-2aB.2-a-1C.1-2-aD.2a-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知把函數(shù)$f(x)=sinx+\sqrt{3}cosx$的圖象向右平移$\frac{π}{4}$個單位,再把橫坐標(biāo)擴大到原來的2倍,得到函數(shù)g(x),則函數(shù)g(x)的一條對稱軸為(  )
A.$x=\frac{π}{6}$B.$x=\frac{5π}{6}$C.$x=\frac{π}{12}$D.$x=\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ)解不等式|3-2x|>5;
(Ⅱ)若?x∈[1,2],x-|x-a|≤1恒成立,求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知F(x)=f(x)-g(x),其中f(x)=$lo{g}_{\frac{1}{2}}$(x-2),當(dāng)點(x,y)在y=f(x)的圖象上時,就有(2x,2y)在y=g(x)的圖象上.
(1)求g(x)的解析式;
(2)解不等式F(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=ax-1-lnx.(a∈R)
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)在x=2處的切線斜率為$\frac{1}{2}$,不等式f(x)≥bx-2對任意x∈(0,+∞)恒成立,求實數(shù)b的取值范圍;
(Ⅲ)證明對于任意n∈N,n≥2有:$\frac{{ln{2^2}}}{2^2}$+$\frac{{ln{3^2}}}{3^2}$+$\frac{{ln{4^2}}}{4^2}$+…+$\frac{{ln{n^2}}}{n^2}$<$\frac{{2{n^2}-n-1}}{2(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-4|+a|x+2|(a∈R)的圖象關(guān)于點(1,0)中心對稱.
(1)求實數(shù)a的值;
(2)解不等式f(x)≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知平面上兩點A(-2,0),B(2,0),在圓C:(x-1)2+(y+1)2=4上取一點P,求使|AP|2+|BP|2取得最小值時點P的坐標(biāo),取得最大值時點P的坐標(biāo),并求出最大、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x)=|x-1|+|x-3|+a(x2-2x),其中a≥0.
(1)若a=0,求f(x)的最小值;
(2)若存在實數(shù)x0,使得f(x0)=1,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案