A. | 12π | B. | 8π | C. | 4π | D. | 2π |
分析 根據(jù)幾何體的三視圖,得出該幾何體是側(cè)面垂直于底面,且底面是直角三角形的三棱錐,求出該三棱錐外接球的直徑,即可求出外接球的表面積.
解答 解:根據(jù)幾何體的三視圖,得;
該幾何體是如圖所示的三棱錐,
且側(cè)面PAC⊥底面ABC,AC⊥BC,
PA=PC=$\sqrt{{(\sqrt{2})}^{2}{+(\sqrt{2})}^{2}}$=2,AC=2$\sqrt{2}$,BC=2;
PB2=PC2+BC2=22+22=8,
AB=$\sqrt{{2}^{2}{+(2\sqrt{2})}^{2}}$=2$\sqrt{3}$,
∴PA2+PB2=AB2,
∴PA⊥PB,
∴AB是該三棱錐外接球的直徑,
∴該外接球的表面積為S=4πR2=π•${(2\sqrt{3})}^{2}$=12π.
故選:A.
點(diǎn)評 本題考查了空間幾何體三視圖的應(yīng)用問題,解題的關(guān)鍵是根據(jù)三視圖還原出幾何體的結(jié)構(gòu)特征,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1 | B. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1 | C. | $\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{10}$=1 | D. | $\frac{{y}^{2}}{10}$-$\frac{{x}^{2}}{6}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com