分析 欲求k的值,只須求出切線的斜率的值即可,故先利用導數(shù)求出在切處的導函數(shù)值,再結(jié)合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
解答 解:∵y=lnx,∴y'=$\frac{1}{x}$,
設切點為(m,lnm),得切線的斜率為$\frac{1}{m}$,
所以曲線在點(m,lnm)處的切線方程為:y-lnm=$\frac{1}{m}$×(x-m).
它過原點,∴-lnm=-1,∴m=e,
∴k=$\frac{1}{e}$.
故答案為$\frac{1}{e}$.
點評 本小題主要考查直線的方程、導數(shù)的幾何意義、利用導數(shù)研究曲線上某點切線方程等基礎知識,考查運算求解能力.屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ①④ | C. | ①②③ | D. | ②③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最小值$\frac{1}{2}$,無最大值 | B. | 有最大值$\frac{1}{2}$,無最小值 | ||
C. | 有最小值$\frac{1}{2}$,有最大值2 | D. | 無最大值,也無最小值 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $22\sqrt{6}$ | B. | $22\sqrt{23}$ | C. | $11\sqrt{23}$ | D. | $11\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-1)∪(1,2)∪(3,+∞) | B. | (-1,1)∪(2,3) | C. | (-1,1)∪(1,2) | D. | (1,2)∪(2,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com