7.數(shù)列{an}的前n項和Sn=3n2+2n+1.
(1)求{an}的通項公式;
(2)令bn=an2n,求{bn}的前n項和Tn

分析 (1)由Sn=3n2+2n+1知,當n≥2時,an=Sn-Sn-1=6n-1,驗證n=1時是否適合,即可求得{an}的通項公式;
(2)bn=an2n,易求T1=12,n>1時,Tn=6×2+11×22+17×23+…+(6n-1)×2n,利用錯位相減法可求得{bn}的前n項和Tn

解答 解:(1)∵Sn=3n2+2n+1,
∴當n≥2時,an=Sn-Sn-1=3n2+2n+1-[3(n-1)2+2(n-1)+1]=6n-1,
當n=1時,a1=6,不適合上式,
∴an=$\left\{\begin{array}{l}{6n-1,n≥2}\\{6,n=1}\end{array}\right.$…..(4分)
(2)∵bn=an2n,
∴n=1時,T1=b1=a1×2=12…..(5分)
n>1時,Tn=6×2+11×22+17×23+…+(6n-1)×2n,①
2Tn=6×22+11×23+17×24+…+(6n-7)×2n+(6n-1)2n+1,②…(9分)
②-①得:Tn=-32-6(23+24+…+2n)+(6n-1)2n+1
=16+(6n-7)×2n+1.…..(11分)
∴Tn=$\left\{\begin{array}{l}{12,n=1}\\{16+(6n-7)•{2}^{n+1},n>1}\end{array}\right.$.…(12分)

點評 本題考查數(shù)列的求和,著重考查遞推關(guān)系的應用、等差數(shù)列通項公式的求法及錯位相減法求和,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=x2+bx,若函數(shù)y=f(f(x))的最小值與函數(shù)y=f(x)的最小值相等,則實數(shù)b的取值范圍是{b|b≥2或b≤0}..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=2alnx+x2-2x(a∈R)在定義域上為單調(diào)遞增函數(shù),則a的最小值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.計算下列各式:
(1)(0.027)${\;}^{\frac{1}{3}}$-(6$\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+256${\;}^{\frac{3}{4}}$+(2$\sqrt{2}$)${\;}^{\frac{2}{3}}$+π0
(2)已知a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$=3,求a2+a-2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.一個三角形三邊長分別為2cm、3cm、4cm,這個三角形最大角的余弦值是-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設集合U={(x,y)|y=3x-4},A={(x,y)|$\frac{y-2}{x-2}$=3},則∁UA={(2,2)}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.己知函數(shù)f(x)=lnx-ax+l,其中a∈R.
(1)求f(x)的單調(diào)區(qū)間;
(2)當a=1時,斜率為k的直線l與函數(shù)f(x)的圖象交于兩點A(x1,y1),B(x2,y2),其中x1<x2,證明:${x_1}<\frac{1}{k+1}<{x_2}$;
(3)是否存在k∈Z,使得f(x)+ax-2>k(1一$\frac{2}{x}$)對任意x>l恒成立?若存在,請求出k的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=|x-m|+|x+4|(m∈R)
(1)當m=5時,求不等式f(x)≤10的解集;
(2)若不等式f(x)≥7對任意實數(shù)x恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知直線y=kx是曲線y=lnx的一條切線,則k的值為$\frac{1}{e}$.

查看答案和解析>>

同步練習冊答案