【題目】已知拋物線:的焦點為,點在拋物線上,且.
(1)求拋物線的方程;
(2)過點作互相垂直的兩條直線,與拋物線分別相交于點,、分別為弦、的中點,求面積的最小值.
【答案】(1)(2)16
【解析】
(1)由拋物線定義可得,故,再由點在拋物線上代入方程即可。
(2)將直線的方程為代入拋物線方程,利用韋達(dá)定理和中點坐標(biāo)公式得出,同理得出。進(jìn)而求出和 ,又是直角三角形易求面積,利用不等式求出面積的最小值。
(1)拋物線的準(zhǔn)線方程為.
由拋物線的定義可得,故.
由點在拋物線上,可得,整理得,
解得或,又,所以.
故拋物線的方程為.
(2)由(1)知拋物線的方程為,焦點為,
由已知可得,所以兩直線的斜率都存在且均不為0.
設(shè)直線的斜率為,則直線的斜率為,
故直線的方程為.
聯(lián)立方程組,消去,整理得.
設(shè),,則,
因為為弦的中點,所以,
由得,故.
同理可得.
故,
.因為,
所以的面積
,當(dāng)且僅當(dāng),即時,等號成立.
所以的面積的最小值為16.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體的外接球O的半徑為,則過該正方體的三個頂點的平面截球O所得的截面的面積為( )
A.2π或B.3π或
C.2π或3πD.2π或3π或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個產(chǎn)品),已知其中有且只有一袋次品(10個產(chǎn)品均為次品)如果將5袋產(chǎn)品以1~5編號,第袋取出個產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號是2,此時的重量_________;若次品所在的袋子的編號是,此時的重量_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠共有男女員工500人,現(xiàn)從中抽取100位員工對他們每月完成合格產(chǎn)品的件數(shù)統(tǒng)計如下:
每月完成合格產(chǎn)品的件數(shù)(單位:百件) | |||||
頻數(shù) | 10 | 45 | 35 | 6 | 4 |
男員工人數(shù) | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產(chǎn)品的件數(shù)不少于3200件的員工被評為“生產(chǎn)能手”.由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手”與性別有關(guān)?
非“生產(chǎn)能手” | “生產(chǎn)能手” | 合計 | |
男員工 | |||
span>女員工 | |||
合計 |
(2)為提高員工勞動的積極性,工廠實行累進(jìn)計件工資制:規(guī)定每月完成合格產(chǎn)品的件數(shù)在定額2600件以內(nèi)的,計件單價為1元;超出件的部分,累進(jìn)計件單價為1.2元;超出件的部分,累進(jìn)計件單價為1.3元;超出400件以上的部分,累進(jìn)計件單價為1.4元.將這4段中各段的頻率視為相應(yīng)的概率,在該廠男員工中選取1人,女員工中隨機選取2人進(jìn)行工資調(diào)查,設(shè)實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如表是我國2012年至2018年國內(nèi)生產(chǎn)總值(單位:萬億美元)的數(shù)據(jù):
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
國內(nèi)生產(chǎn)總值 (單位:萬億美元) | 8.5 | 9.6 | 10.4 | 11 | 11.1 | 12.1 | 13.6 |
(1)從表中數(shù)據(jù)可知和線性相關(guān)性較強,求出以為解釋變量為預(yù)報變量的線性回歸方程;
(2)已知美國2018年的國內(nèi)生產(chǎn)總值約為20.5萬億美元,用(1)的結(jié)論,求出我國最早在那個年份才能趕上美國2018年的國內(nèi)生產(chǎn)總值?
參考數(shù)據(jù):,
參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;
(2)若,設(shè)是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com