【題目】已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)若,且對(duì)任意恒成立,求的最小值.

【答案】(1);(2)1.

【解析】

(1) 當(dāng)時(shí),求出分段函數(shù),然后可以選擇數(shù)形結(jié)合求解或選擇解不等式組;

(2)當(dāng)時(shí),化簡(jiǎn)分段函數(shù)得

可以得到函數(shù)上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增,然后利用最值分析法,即可求出參數(shù)的最小值.

(1)當(dāng)時(shí),,即,

解法一:作函數(shù)的圖象,它與直線的交點(diǎn)為,

所以,的解集的解集為

解法2:原不等式等價(jià)于 ,

解得:或無解或

所以,的解集為

(2)

所以函數(shù)上單調(diào)遞減,在上單調(diào)遞減,在上單調(diào)遞增.

所以當(dāng)時(shí),取得最小值,

因?yàn)閷?duì),恒成立,

所以

又因?yàn)?/span>

所以,

解得不合題意).

所以的最小值為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個(gè)點(diǎn)A、B、C、A1、B1、C1上各裝一個(gè)燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個(gè)的安裝方法共有 種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面五邊形ABCDE中,ABCE,且AE2,AEC60°,CDED,cosEDC.將△CDE沿CE折起,使點(diǎn)D移動(dòng)到P的位置,且AP,得到四棱錐PABCE.

(1)求證:AP⊥平面ABCE

(2)記平面PAB與平面PCE相交于直線l,求證:ABl.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一款智能學(xué)習(xí)APP,學(xué)習(xí)內(nèi)容包含文章學(xué)習(xí)和視頻學(xué)習(xí)兩類,且這兩類學(xué)習(xí)互不影響.已知該APP積分規(guī)則如下:每閱讀一篇文章積1分,每日上限積5分;觀看視頻累計(jì)3分鐘積2分,每日上限積6分.經(jīng)過抽樣統(tǒng)計(jì)發(fā)現(xiàn),文章學(xué)習(xí)積分的概率分布表如表1所示,視頻學(xué)習(xí)積分的概率分布表如表2所示.

(1)現(xiàn)隨機(jī)抽取1人了解學(xué)習(xí)情況,求其每日學(xué)習(xí)積分不低于9分的概率;

(2)現(xiàn)隨機(jī)抽取3人了解學(xué)習(xí)情況,設(shè)積分不低于9分的人數(shù)為,求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】揚(yáng)州大學(xué)數(shù)學(xué)系有6名大學(xué)生要去甲、乙兩所中學(xué)實(shí)習(xí),每名大學(xué)生都被隨機(jī)分配到兩所中學(xué)的其中一所.

(1)求6名大學(xué)生中至少有1名被分配到甲學(xué)校實(shí)習(xí)的概率;

(2)設(shè),分別表示分配到甲、乙兩所中學(xué)的大學(xué)生人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線lx+y-6=0,過直線上一點(diǎn)P作圓x2+y2=4的切線,切點(diǎn)分別為AB,則四邊形PAOB面積的最小值為______,此時(shí)四邊形PAOB外接圓的方程為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“綠水青山就是金山銀山”,“建設(shè)美麗中國(guó)”已成為新時(shí)代中國(guó)特色社會(huì)主義生態(tài)文明建設(shè)的重要內(nèi)容,某班在一次研學(xué)旅行活動(dòng)中,為了解某苗圃基地的柏樹幼苗生長(zhǎng)情況,在這些樹苗中隨機(jī)抽取了120株測(cè)量高度(單位:),經(jīng)統(tǒng)計(jì),樹苗的高度均在區(qū)間內(nèi),將其按,,,,,分成6組,制成如圖所示的頻率分布直方圖.據(jù)當(dāng)?shù)匕貥涿缟L(zhǎng)規(guī)律,高度不低于的為優(yōu)質(zhì)樹苗.

1)求圖中的值;

2)已知所抽取的這120株樹苗來自于兩個(gè)試驗(yàn)區(qū),部分?jǐn)?shù)據(jù)如列聯(lián)表:

試驗(yàn)區(qū)

試驗(yàn)區(qū)

合計(jì)

優(yōu)質(zhì)樹苗

20

非優(yōu)質(zhì)樹苗

60

合計(jì)

將列聯(lián)表補(bǔ)充完整,并判斷是否有99.9%的把握認(rèn)為優(yōu)質(zhì)樹苗與,兩個(gè)試驗(yàn)區(qū)有關(guān)系,并說明理由;

3)用樣本估計(jì)總體,若從這批樹苗中隨機(jī)抽取4株,其中優(yōu)質(zhì)樹苗的株數(shù)為,求的分布列和數(shù)學(xué)期望.

附:參考公式與參考數(shù)據(jù):,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,過點(diǎn)于點(diǎn),以為折痕把折起,當(dāng)幾何體的的體積最大時(shí),則下列命題中正確的個(gè)數(shù)是( )

∥平面

與平面所成的角等于與平面所成的角

所成的角等于所成的角

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個(gè)校區(qū)分別位于扇形OAB的三個(gè)頂點(diǎn)上,點(diǎn)Q是弧AB的中點(diǎn),現(xiàn)欲在線段OQ上找一處開挖工作坑P(不與點(diǎn)O,Q重合),為小區(qū)鋪設(shè)三條地下電纜管線PO,PA,PB,已知OA=2千米,∠AOB=,記∠APQ=θrad,地下電纜管線的總長(zhǎng)度為y千米.

(1)將y表示成θ的函數(shù),并寫出θ的范圍;

(2)請(qǐng)確定工作坑P的位置,使地下電纜管線的總長(zhǎng)度最。

查看答案和解析>>

同步練習(xí)冊(cè)答案