18.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},則M∪N=( 。
A.{x|x≤3}B.{x|2<x<3}C.ND.R

分析 首先化簡(jiǎn)集合M,然后根據(jù)并集的定義求出M∪N.

解答 解:∵lg(x-2)≤0=log21,
∴0<x-2≤1,
解得2<x≤3,
∴M={x|2<x≤3},
∵N={x|-1≤x≤3},
∴M∪N={x|-1≤x≤3}=N,
故選:C.

點(diǎn)評(píng) 本題考查學(xué)生理解并集的定義,會(huì)進(jìn)行并集的運(yùn)算,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a∈R,“函數(shù)y=3x+a-1有零點(diǎn)”是“函數(shù)y=logax在(0,+∞)上為減函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.網(wǎng)格紙上小正方形的邊長(zhǎng)為1,如圖畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.44B.56C.68D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤2x}\\{y≥\frac{1}{2}x}\\{x≤k}\end{array}\right.$,且目標(biāo)函數(shù)z=2x+y的最大值為3,則k=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2016年高考報(bào)名體檢中,某市共有40000名男生參加體檢,體檢其中一項(xiàng)為測(cè)量身高,統(tǒng)計(jì)調(diào)查數(shù)據(jù)顯示所有男生的身高服從正態(tài)分布N(170,16),統(tǒng)計(jì)人員從市一中高三的參加體檢的男生中隨機(jī)抽取了50名進(jìn)行身高測(cè)量,所得數(shù)據(jù)全部介于162cm和186cm之間,并將測(cè)量數(shù)據(jù)分成6組:第一組[162,166),第二組[166,170),…,第六組[182,186),然后按上述分組方式繪制得到如圖所示的頻率分布直方圖.
(1)試評(píng)估市一中高三年級(jí)參加體檢的男生在全市高三年級(jí)參加體驗(yàn)的男生中的平均身高狀況(同一組中的數(shù)據(jù)用該區(qū)間的中間值作代表);
(2)在這50名參加體檢的男生身高在178cm以上(含178cm)的人中任意抽取3人,將該3人中身高排名(從高到低)在全市參加體檢的高三男生身高前52名的人數(shù)記為X,求X的數(shù)學(xué)期望.
參考數(shù)據(jù):
若X~N(μ,δ2),則P(μ-δ<X≤μ+δ)=0.6826,P(μ-2δ<X≤μ+2δ)=0.9544,P(μ-3δ<X≤μ+3δ)=0.9974.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.2016年春節(jié)期間全國(guó)流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個(gè),產(chǎn)生的手氣紅包頻數(shù)分布表如表:
全額分組[1,5)[5,9)[9,13)[13,17)[17,21)[21,25]
頻數(shù)39171182
(I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計(jì)手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)在這50個(gè)紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區(qū)間[21,25]內(nèi)為最佳運(yùn)氣手,求搶得紅包的某人恰好是最佳運(yùn)氣手的概率;
(ii)隨機(jī)抽取手氣紅包金額在[1,5)∪[-21,25]內(nèi)的兩名幸運(yùn)者,設(shè)其手氣金額分別為m,n,求事件“|m-n|>16”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象與直線y=b(0<b<A)相交,其中一個(gè)交點(diǎn)P的橫坐標(biāo)為4,若與P相鄰的兩個(gè)交點(diǎn)的橫坐標(biāo)為2,8,則函數(shù)f(x)( 。
A.在[0,3]上是減函數(shù)B.在[-3,0]上是減函數(shù)
C.在[0,π]上是減函數(shù)D.在[-π,0]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)點(diǎn)O是邊長(zhǎng)為1的正△ABC的中心(如圖所示),則($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=(  )
A.$\frac{1}{9}$B.-$\frac{1}{9}$C.-$\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{2x}{3x+2}$,數(shù)列{an}滿足a1=1,an+1=f(an).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)(理)設(shè)bn=anan+1,數(shù)列{bn}的前n項(xiàng)和為Sn,若Sn<$\frac{m-2016}{2}$對(duì)一切正整數(shù)n都成立,求最小的正整數(shù)m的值.
(2)(文)設(shè)bn=$\frac{1}{a_n}$×2n,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案