3.2016年春節(jié)期間全國流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個(gè),產(chǎn)生的手氣紅包頻數(shù)分布表如表:
全額分組[1,5)[5,9)[9,13)[13,17)[17,21)[21,25]
頻數(shù)39171182
(I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計(jì)手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)在這50個(gè)紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區(qū)間[21,25]內(nèi)為最佳運(yùn)氣手,求搶得紅包的某人恰好是最佳運(yùn)氣手的概率;
(ii)隨機(jī)抽取手氣紅包金額在[1,5)∪[-21,25]內(nèi)的兩名幸運(yùn)者,設(shè)其手氣金額分別為m,n,求事件“|m-n|>16”的概率.

分析 (Ⅰ)由題意利用互斥事件概率加法公式能求出產(chǎn)生的手氣紅包的金額不小于9元的頻率.
(Ⅱ)先求出手氣紅包在[1,5)、[5,9)、[9,13)、[13,17)、[17,21)、[21,25]內(nèi)的頻率,由此能求了出手氣紅包金額的平均數(shù).
(Ⅲ)(i)由題可知紅包金額在區(qū)間[21,25]內(nèi)有兩人,由此能求出搶得紅包的某人恰好是最佳運(yùn)氣手的概率.
(ii)由頻率分布表可知,紅包金額在[1,5)內(nèi)有3人,在[21,25]內(nèi)有2人,由此能求出事件“|m-n|>16“的概率P(|m-n|>16).

解答 解:(Ⅰ)由題意得產(chǎn)生的手氣紅包的金額不小于9元的頻率:
p=$\frac{17+11+8+2}{50}$=$\frac{19}{25}$,
∴產(chǎn)生的手氣紅包的金額不小于9元的頻率為$\frac{19}{25}$.
(Ⅱ)手氣紅包在[1,5)內(nèi)的頻率為$\frac{3}{50}$=0.06,
手氣紅包在[5,9)內(nèi)的頻率為$\frac{9}{50}$=0.18,
手氣紅包在[9,13)內(nèi)的頻率為$\frac{17}{50}$=0.34,
手氣紅包在[13,17)內(nèi)的頻率為$\frac{11}{50}$=0.22,
手氣紅包在[17,21)內(nèi)的頻率為$\frac{8}{50}$=0.16,
手氣紅包在[21,25]內(nèi)的頻率為$\frac{2}{50}$=0.04,
則手氣紅包金額的平均數(shù)為:
$\overline{x}$=3×0.06+7×0.18+11÷0.34+15×0.22+19×0.16+23×0.04=12.44.
(Ⅲ)(i)由題可知紅包金額在區(qū)間[21,25]內(nèi)有兩人,
∴搶得紅包的某人恰好是最佳運(yùn)氣手的概率p=$\frac{2}{50}$=$\frac{1}{25}$.
(ii)由頻率分布表可知,紅包金額在[1,5)內(nèi)有3人,
設(shè)紅包金額分別為a,b,c,在[21,25]內(nèi)有2人,
設(shè)紅包金額分別為x,y,
若m,n均在[1,5)內(nèi),有3種情況:(a,b),(a,c),(b,c),
若m,n均在[21,25]內(nèi)只有一種情況:(x,y),
若m,n分別在[1,5)和[21,25)內(nèi),有6種情況,
即(a,x),(a,y),(b,x),(b,y),(c,x),(c,y),
∴基本事件總數(shù)n=10,
而事件“|m-n|>16“所包含的基本事件有6種,
∴P(|m-n|>16)=$\frac{6}{10}$=$\frac{3}{5}$.

點(diǎn)評(píng) 本題考查頻率的求法,考查概率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意頻數(shù)分布表的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某校高一年級(jí)學(xué)生全部參加了體育科目的達(dá)標(biāo)測(cè)試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測(cè)試成績,整理數(shù)據(jù)并按分?jǐn)?shù)段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]進(jìn)行分組,假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,則得到體育成績的折線圖(如圖).
(Ⅰ)體育成績大于或等于70分的學(xué)生常被稱為“體育良好”.已知該校高一年級(jí)有1000名學(xué)生,試估計(jì)高一年級(jí)中“體育良好”的學(xué)生人數(shù);
(Ⅱ)為分析學(xué)生平時(shí)的體育活動(dòng)情況,現(xiàn)從體育成績?cè)赱60,70)和[80,90)的樣本學(xué)生中隨機(jī)抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績?cè)赱60,70)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)A(5,0),點(diǎn)P(x0,y0)在曲線C:y2=4x上,且線段AP的垂直平分線經(jīng)過曲線C的焦點(diǎn)F,則x0的值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.B.C.2+πD.6+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},則M∪N=( 。
A.{x|x≤3}B.{x|2<x<3}C.ND.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某多面體是一個(gè)四棱錐被一平面截去一部分后得到,它的三視圖如圖所示,此多面體的體積是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{1}{2}$sin2x+$\frac{{\sqrt{3}}}{2}$cos2x的最小正周期是π,單調(diào)遞增區(qū)間是[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$],(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a、b、c分別為△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊,asinA=bsinB+(c-b)sinC.
(1)求A;
(2)若等差數(shù)列{an}的公差不為零,且a1cosA=1,且a2、a4、a8成等比數(shù)列,求{${\frac{4}{{{a_n}{a_{n+1}}}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某濱海城市計(jì)劃沿一條濱海大道修建7個(gè)海邊主題公園,由于資金的原因,打算減少2個(gè)海邊主題公園,兩端海邊主題公園不在調(diào)整計(jì)劃之列,相鄰的兩個(gè)海邊主題公園不能在同時(shí)調(diào)整,則調(diào)整方案的種數(shù)是( 。
A.12B.8C.6D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案