精英家教網 > 高中數學 > 題目詳情
2.已知a∈R,“函數y=3x+a-1有零點”是“函數y=logax在(0,+∞)上為減函數”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 函數y=3x+a-1有零點,可得a=1-3x<1.由函數y=logax在(0,+∞)上為減函數,可得0<a<1.即可判斷出結論.

解答 解:函數y=3x+a-1有零點,則a=1-3x<1.
由函數y=logax在(0,+∞)上為減函數,可得0<a<1.
∴函數y=3x+a-1有零點”是“函數y=logax在(0,+∞)上為減函數”的必要不充分條件.
故選:B.

點評 本題考查了函數的單調性、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

13.如圖,在直角梯形ABCD中,AB∥CD,∠ADC=90°,AB=3,AD=$\sqrt{2}$,E為BC中點,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,則$\overrightarrow{AE}$•$\overrightarrow{BC}$=-3.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

10.在△ABC中,角A,B,C的對邊分別為a,b,c,且3bsinA=2$\sqrt{3}$asinC.
(1)若A+3C=π,求sinB的值;
(2)若c=3,△ABC的面積為3$\sqrt{2}$,求a.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知1是lga與lgb的等比中項,若a>1,b>1,則ab有( 。
A.最小值10B.最小值100C.最大值10D.最大值100

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.某校高一年級學生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學生的測試成績,整理數據并按分數段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]進行分組,假設同一組中的每個數據可用該組區(qū)間的中點值代替,則得到體育成績的折線圖(如圖).
(Ⅰ)體育成績大于或等于70分的學生常被稱為“體育良好”.已知該校高一年級有1000名學生,試估計高一年級中“體育良好”的學生人數;
(Ⅱ)為分析學生平時的體育活動情況,現(xiàn)從體育成績在[60,70)和[80,90)的樣本學生中隨機抽取2人,求在抽取的2名學生中,至少有1人體育成績在[60,70)的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.某單位利用周末時間組織員工進行一次“健康之路,攜手共筑”徒步走健身活動,有n人參加,現(xiàn)將所有參加人員按年齡情況分為[25,30),[30,35],[35,40),[40,45),[45,50),[50,55]六組,其頻率分布直方圖如圖所示.已知[35,40)歲年齡段中的參加者有8人.
(1)求n的值并補全頻率分布直方圖;
(2)從[30,40)歲年齡段中采用分層抽樣的方法抽取5人作為活動的組織者,其中選取2人作為領隊,在選取的2名領隊中至少有1人的年齡在[35,40)內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知點P為拋物線y2=4x上的一個動點,點Q為圓x2+(y-7)2=1上的一個動點,那么點P到點Q的距離與點P到y(tǒng)軸的距離之和的最小值是( 。
A.5$\sqrt{2}$-7B.5$\sqrt{2}$-2C.5$\sqrt{2}$-1D.5$\sqrt{2}$+1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知集合M={x|lg(x-2)≤0},N={x|-1≤x≤3},則M∪N=( 。
A.{x|x≤3}B.{x|2<x<3}C.ND.R

查看答案和解析>>

同步練習冊答案