15.若a=sin22.5°,b=cos22.5°,c=tan22.5°,則a,b,c的大小關(guān)系為(  )
A.a>b>cB.b>a>cC.b>c>aD.c>b>a

分析 分別作出三角函數(shù)線,比較可得.

解答 解:作出三角函數(shù)線結(jié)合圖象,
a=sin22.5°=MP,
b=cos22.5°=OM,
c=tan22.5°=AT,
可得b>c>a,

故選:C.

點評 本題考查三角函數(shù)線,數(shù)形結(jié)合是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的前n項和為Sn,Sn=n2(n∈N*),則①a3=5;②通項公式an=2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知動點M與兩點P1($\frac{r}{2}$,0),P2(2r,0)的距離之比為$\frac{1}{2}$,r>0.
(1)求動點M的軌跡Γ的方程;
(2)已知菱形ABCD的一個內(nèi)角為60°,頂點A,B在直線l:y=2x+3上,頂點C,D在Γ上,當(dāng)直線l與Γ無公共點時,求菱形ABCD的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,內(nèi)角A,B,C所對邊分別為a,b,c,且a=3b,sinB=$\frac{1}{4}$,則sinA等于( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{9}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若2cos(θ-$\frac{π}{3}$)=3cosθ,則tan2θ=-4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overrightarrow{a}$,$\overrightarrow$是兩個不共線的平面向量,向量$\overrightarrow{AB}$=λ$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{a}$-μ$\overrightarrow$(λ,μ∈R),若$\overrightarrow{AB}$∥$\overrightarrow{AC}$,則有(  )
A.λ+μ=2B.λ-μ=1C.λμ=-1D.λμ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,∠BAC=45°,∠ABC=60°,O為三角形的外心,以線段OB,OC為鄰邊作平行四邊形,第四個頂點為D,再以O(shè)A,OD為鄰邊作平行四邊形,它的第四個頂點為H.
(1)設(shè)向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{OH}$;
(2)用向量法證明:AH⊥BC;
(3)若△ABC的外接圓半徑為$\sqrt{2}$,求OH的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某校從高一年級A,B兩個班中各選出7名學(xué)生參加物理競賽,他們的成績(單位:分)的莖葉圖如圖所示,其中A班學(xué)生的平均分是85分
(1)求m的值,并計算A班7名學(xué)生成績的方差s2
(2)從成績在90分以上的學(xué)生中隨機抽取兩名學(xué)生,求至少有一名A班學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在區(qū)間[-1,3]上任取一個實數(shù),則該數(shù)是不等式x2≤4的解的概率為$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案