16.如圖是一個幾何體的三視圖,其中正視圖和側(cè)視圖是高為2,底邊長為$2\sqrt{2}$的等腰三角形,俯視圖是邊長為2的正方形,則該幾何體的外接球的體積是4$\sqrt{3}$π.

分析 由三視圖可知:該幾何體為四棱錐.CD=AB=2$\sqrt{2}$,AB與CD之間的距離為2.分別取AB,CD的中點E,F(xiàn),取EF的中點O,為該幾何體的外接球的球心.

解答 解:由三視圖可知:該幾何體為四棱錐.CD=AB=2$\sqrt{2}$,AB與CD之間的距離為2.
分別取AB,CD的中點E,F(xiàn),取EF的中點O,為該幾何體的外接球的球心.
則半徑R=$\sqrt{(\sqrt{2})^{2}+{1}^{2}}$=$\sqrt{3}$.
∴該幾何體的外接球的體積V=$\frac{4}{3}π×(\sqrt{3})^{3}$=4$\sqrt{3}$π.
故答案為:$4\sqrt{3}π$.

點評 本題考查了四棱錐的三視圖、球的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.甲乙兩家快遞公司,其快遞員的日工資方案如下:甲公司底薪70元,每單抽成2;乙公式無底薪,40單內(nèi)(含40單)的部分每單抽成4元,超出40單的部分每單抽成6元,假設(shè)同一公司快遞員一天送快遞單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名快遞員,并分別記錄其100天的送快遞單數(shù),得到如下的頻率表:
甲公司快遞員送快遞單數(shù)頻數(shù)表
送餐單數(shù) 3839404142
天數(shù)2040201010
乙公司快遞員送快遞單數(shù)頻數(shù)表 
送餐單數(shù) 3839404142
天數(shù)1020204010
(1)記乙公司快遞員日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(2)小明到甲乙兩家公司中的一家應(yīng)聘快遞員,如果僅從日工資的角度考慮,請利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C的極坐標(biāo)方程是ρ=2$\sqrt{2}$•sin(θ+$\frac{π}{4}$),直線l的極坐標(biāo)方程為ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(提示:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ$\overline{+}$ sinαsinβ
(1)求圓與直線的直角坐標(biāo)方程.
(2)判斷直線l和圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,如果輸入的a,b分別為56,140,則輸出的a=( 。
A.0B.7C.14D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z滿足1+i=(1-i)2z,則z的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=sinx(cosx-sinx)+$\frac{1}{2}$
(Ⅰ)求f(x)的最小正周期;
(II)求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-1+aln(1-x),a∈R.
(Ⅰ)若函數(shù)f(x)為定義域上的單調(diào)函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)存在兩個極值點x1,x2,且x1<x2.證明:$\frac{f({x}_{1})}{{x}_{2}}$>$\frac{f({x}_{2})}{{x}_{1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖是求12+22+32+…+1002的程序框圖,則圖中的①②分別是(  )
A.①S=S+i、趇=i+1B.①S=S+i2、趇=i+1C.①i=i+1 ②S=S+iD.①i=i+1、赟=S+i2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為15m3

查看答案和解析>>

同步練習(xí)冊答案